• 제목/요약/키워드: Angle-ply

검색결과 187건 처리시간 0.024초

압전재료를 이용한 위성체 구조물의 열 진동 제어 (Thermally Induced Vibration Control of Flexible Spacecraft Appendages Using by Piezoelectric Material)

  • 윤일성;송오섭;김규선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.303-310
    • /
    • 2002
  • The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thin-walled beams of closed cross-section and subjected to thermal radiation loading is investigated in this paper. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bending-lagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection time-history as a function of the ply-angle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that an bonded or embedded into the host structure.

  • PDF

복합적층판의 진동인텐시티에 관한 연구 (A Study on Vibration Intensity of Laminated Composite Plate)

  • 서진;김동영;홍도관;최석창;안찬우;한근조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.892-895
    • /
    • 2002
  • In this study, to grasp the effect of vibration intensity fur the laminated composite plate, the two-dimension plate was shaken by a harmonic point excitation with the natural frequency using the finite element method. As the result, it shows that the vibration intensity according to the change of angle-ply is various and it flows to the direction of length rather than width in the plate. Also this paper represents those results to the vector flow.

  • PDF

Size-dependent vibration analysis of laminated composite plates

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Advances in nano research
    • /
    • 제7권5호
    • /
    • pp.337-349
    • /
    • 2019
  • The size-dependent vibration analysis of a cross-/angle-ply laminated composite plate when embedded on the Pasternak elastic foundation and exposed to an in-plane magnetic field are investigated by adopting an analytical eigenvalue approach. The formulation, which is based on refined-hyperbolic-shear-deformation-plate theory in conjunction with the Eringen Nonlocal Differential Model (ENDM), is tested against considering problems for which numerical/analytical solutions available in the literature. The findings of this study demonstrated the role of magnetic field, size effect, elastic foundation coefficients, geometry, moduli ratio, lay-up numbers and fiber orientations on the nonlocal frequency of cross-/angle-ply laminated composite plates.

Response of angle-ply laminated cylindrical shells with surface-bonded piezoelectric layers

  • Wang, Haojie;Yan, Wei;Li, Chunyang
    • Structural Engineering and Mechanics
    • /
    • 제76권5호
    • /
    • pp.599-611
    • /
    • 2020
  • A state-space method is developed to investigate the time-dependent behaviors of an angle-ply cylindrical shell in cylindrical bending with surface-bonded piezoelectric layers. Both the interfacial diffusion and sliding are considered to describe the properties of the imperfect interfaces. Particularly, a matrix reduction technique is adopted to establish the transfer relations between the elastic and piezoelectric layers of the laminated shell. Very different from our previous paper, in which an approximate numerical technique, i.e. power series expansion method, is used to deal with the time-dependent problems, the exact solutions are derived in the present analysis based on the piezoelasticity equations without any assumptions. Numerical results are finally obtained and the effects of imperfect interfaces on the electro-mechanical responses of the laminated shell are discussed.

Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory

  • Yahea, Hussein T.;Majeed, Widad I.
    • Composite Materials and Engineering
    • /
    • 제3권3호
    • /
    • pp.179-199
    • /
    • 2021
  • A simple solution for free vibration of cross-ply and angle-ply laminated composite plates in a thermal environment is investigated using a basic trigonometric shear deformation theory. By application of trigonometric four variable plate theory, the transverse displacement is subdivided into bending and shear components, the present theory's number of unknowns and governing equations is reduced, making it easier to use. Hamilton's Principle is extended to derive the equations of motion of the plates using Navier's double trigonometric series, a closed-form solution is obtained; the primary conclusion is that simple solution is obtained with good results accuracy when compared with previously published results, and the natural frequency will differ depending on, environment temperature, thickness ratio, and lamination angle, as well as the aspect ratio of the plate.

논문 : 복합재료 항공기 동체 부품 설계 (Papers : Component Design of a composite Aircraft Fuselage)

  • 김성열;이수용;박정선
    • 한국항공우주학회지
    • /
    • 제30권1호
    • /
    • pp.65-74
    • /
    • 2002
  • 항공기 동체의 주 구조를 이루는 스킨, 스트링거, 프레임을 복합재료 부재료 대체하여 파손 및 좌굴에 대해 유한요소해석을 수행하였다. 각 부재의 하중은 기존 항공기 MD90-30의 하중을 적용하였으며, 스트링거, 프레임은 I, Z, T-type의 3가지 단면형상을 선정하여 해석하였다. 복합재료 부재의 적층각, 적층수에 따른 부재의 특성을 알아보고, 단면형상에 대한 비교를 수행하였다. 해석결과 파손은 적층각에 좌굴은 적층수에 많은 영향을 받으며, 스킨, 스트링거는 좌굴이 프레임은 축방향 하중에 의한 파손이 부재 설계의 중요한 요소임을 알 수 있었다. 스트링거, 프레임은 준등방성 적층의 경우 [0/60/-60]적층이 좋은 결과를 갖는 것을 알 수 있었고 단면형상에 대해서는 I-type이 가장 좋은 결과를 보였다. 또한 기존 알루미늄 부재와의 비교를 통해 복합재료 부재의 경량성을 확인할 수 있었다.

Influence of fiber paths on buckling load of tailored conical shells

  • Naderi, Ali-Asghar;Rahimi, Gholam-Hossein;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.375-387
    • /
    • 2014
  • The purpose of this paper is to propose a method for evaluation of varying stiffness coefficients of tailored conical shells (TCS). Furthermore, a comparison between buckling loads of these shells under axial load with the different fiber path is performed. A circular truncated conical shell subjected to axial compression is taken into account. Three different theoretical path containing geodesic path, constant curvature path and constant angle path has been considered to describe the angle variation along the cone length, along cone generator of a conical shell are offered. In the TCS with the arbitrary fiber path, the thickness and the ply orientation are assumed to be functions of the shell coordinates and influencing stiffness coefficients of the structure. The stiffness coefficients and the buckling loads of shells are calculated basing on classical shells theory (CST) and using finite-element analysis (FEA) software. The obtained results for TCS with arbitrary fiber path, thickness and ply orientation are derived as functions of shell longitudinal coordinate and influencing stiffness coefficients of structures. Furthermore, the buckling loads based on fiber path and ply orientation at the start of tailored fiber get to be different. The extent of difference for tailored fiber with start angle lower than 20 degrees is not significant. The results in this paper show that using tailored fiber placement could be applied for producing conical shells in order to have greater buckling strengths and lower weight. This work demonstrates the use of fiber path definitions for calculated stiffness coefficients and buckling loads of conical shells.

Ant colony optimization for dynamic stability of laminated composite plates

  • Shafei, Erfan;Shirzad, Akbar
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.105-116
    • /
    • 2017
  • This paper presents the dynamic stability study of laminated composite plates with different force combinations and aspect ratios. Optimum non-diverging stacking is obtained for certain loading combination and aspect ratio. In addition, the stability force is maximized for a definite operating frequency. A dynamic version of the principle of virtual work for laminated composites is used to obtain force-frequency relation. Since dynamic stiffness governs the divergence or flutter, an efficient optimization method is necessary for the response functional and the relevant constraints. In this way, a model based on the ant colony optimization (ACO) algorithm is proposed to search for the proper stacking. The ACO algorithm is used since it treats with large number of dynamic stability parameters. Governing equations are formulated using classic laminate theory (CLT) and von-Karman plate technique. Load-frequency relations are explicitly obtained for fundamental and secondary flutter modes of simply supported composite plate with arbitrary aspect ratio, stacking and boundary load, which are used in optimization process. Obtained results are compared with the finite element method results for validity and accuracy convince. Results revealed that the optimum stacking with stable dynamic response and maximum critical load is in angle-ply mode with almost near-unidirectional fiber orientations for fundamental flutter mode. In addition, short plates behave better than long plates in combined axial-shear load case regarding stable oscillation. The interaction of uniaxial and shear forces intensifies the instability in long plates than short ones which needs low-angle layup orientations to provide required dynamic stiffness. However, a combination of angle-ply and cross-ply stacking with a near-square aspect ratio is appropriate for the composite plate regarding secondary flutter mode.

Ultrasonic Characterization on Sequences of CFRP Composites Based on Modeling and Motorized System

  • Im, Kwang-Hee;David K. Hsu;Song, Sung-Jin;Park, Je-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.65-73
    • /
    • 2004
  • Composites are a material class for which nondestructive material property characterization is as important as flaw detection. Laminates of fiber reinforced composites often possess strong in-plane elastic anisotropy attributable to the specific fiber orientation and layup sequence when waves are propagating in the thickness direction of composite laminates. So the layup orientation greatly influences its properties in a composite laminate. It could result in the part being .ejected and discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore a ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. Also in order to develop these methods into practical inspection tools, motorized system have been developed for different measurement modalities for acquiring ultrasonic signals as a function of in-plane angle. It is found that high probability shows between the model and tests developed in characterizing cured layups of the laminates.