• Title/Summary/Keyword: Angle-Ply Laminate

Search Result 48, Processing Time 0.029 seconds

Minimum Weight Design Method for Infantry Fighting Vehicles Hull using Thick Composite Laminate (전투용 차량의 경량화 최적설계 기법 연구)

  • 김건인;조맹효;구만회
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 2001
  • In this paper, general design process for Tracked Fighting Vehicle has been suggested. Stress analysis and optimal design for ply angle of IFV's composite upper hull has been calculated using KMA CIFV and it is contained exploratory development of design process. In this point, this paper applied composite to IFV's upper hull. Finite element mesh has been made using Matlab program, and we have analyzed stress based on the given material properties and ply arrangement. For each load condition, load distribution in plane and failure index are calculated by using Tasi-Hill criterion, which is composite failure criterion and analyzing change of failure index as change of ply angle. Finally, optimal ply angles of upper hull are calculated using KMA CIFV. We can estimate the decrease of weight for IFV's upper hull.

  • PDF

Effects of Non-Woven Tissue on the Mechanical Behavior of Angle-Ply Laminates (부직포가 예각 적층판의 기계적 거동에 미치는 효과)

  • 정성균
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.109-115
    • /
    • 2001
  • This paper investigates the mechanical characteristics of angle-ply laminates with non-woven carbon tissue. The lami- nates were made by inserting non-woven carbon tissue at the interface. Specimens were rounded near the tabs by grinding and polishing to reduce the stress concentration. Cyclic loads were applied to the specimens and the stress and fatigue life curves were obtained. The matrix crack density was also evaluated to check the effects of non-woven carbon tissue on the fracture resistance of composite laminates. C-Sean technique was used to evaluate the delamination, and SEM was used to understand the fracture mechanisms of the laminates. Experimental results show that the fatigue strength and life of composite laminates were increased by inserting non- woven carbon tissues. The results also show that the matrix crack density and delamination area were reduced by inserting non-woven carbon tissues.

  • PDF

Optimal Design of Ultracentrifuge Composite Rotor by Structral Analysis (초고속 원심분리기 복합재 로터의 해석 및 최적설계)

  • 박종권;김영호;하성규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.130-136
    • /
    • 1998
  • A procedure of stress and strength analysis has been proposed for the centrifuge rotor of composite materials of quasi-isotropic laminates. The goal in this study is to maximize the allowable rotating speed, that is, to minimize maximum strength ratio with the given path length by changing the geometric parameter-outer radius and ply angles in quasi-isotropic laminates. Optimum values of the geometric parameter-outer radius and ply angles are obtained by multilevel optimization. All the geometric dimensions and stresses are normalized such that the result can be extended to a general case. Two dimensional analysis at each cross section with an elliptic tube hole subjected to internal hydrostatic pressures by samples as well as the centrifugal body forces has been performed along the height to calculate the stress distribution with the plane stress assumption, and Tsai-Wu failure criterion is used to calculate the strength ratio. The maximum allowable rotating speed can be increased by changing the radii of the outer surface along the height with the maximum strength ratio under the unit value : The optimal number of ply angles maximizing the allowable rotating speed in quasi-isotropic laminates is found to be the half number of tube hole, and the optimal laminate rotation angle is the half of $[{\pi}/m]$. A $[{\pi}/3]$ laminate, for instance, is stronger than a $[{\pi}/4]$ laminate for the centrifuge rotor of 6 tube hole number even though they have the same stiffness.

  • PDF

An Experimental Evaluation of Mechanical Properties and Failure Processing in Composite Laminate (복합재료의 기계적 성질 및 파손과정 평가)

  • J.W.,Ong;K.H.,Song;R.W.,Sung;B.S.,Shim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.58-68
    • /
    • 1988
  • This paper is concerned with mechanical properties of unidirectional laminate $[(0^{\circ})_{8T},\;(90^{\circ})_{8T}]$, composed of angle plies $[({\pm}15^{\circ})_{2S},\;({\pm}30^{\circ})_{2S},\;({\pm}45^{\circ})_{2S},\;({\pm}60^{\circ})_{2S},\;({\pm}75^{\circ})_{2S}$ and laminate $[(9^{\circ}/90^{\circ})_{2S},\;(90^{\circ}/{\pm}45^{\circ}/0^{\circ})_S,\;({\pm}45^{\circ}/0^{\circ}/{\pm}90^{\circ})_S,\;({\pm}45^{\circ}/90^{\circ}/0^{\circ})_S,\;(0^{\circ}/90^{\circ}/{\pm}45^{\circ})_S,\;(90^{\circ}/0^{\circ}/{\pm}45^{\circ})_S]$ under the condition of uniform strain tension. Also, experimental investigation was conducted $[10]_{8T}$, off-axis tensile test for intralaminar shear characterization. The experimental data on the failure criterion of tensor polynomial were compared with those from the classical laminate theory. Acoustic Emission experiments have been carried out to investigate the changes of the amplitude distributions of Acoustic Emission monitored during failure of tensile tests on Carbon/Epoxy composites.

  • PDF

On Fiber Orientation Characterization of CERP Laminate Layups Using Ultrasonic Azimuthal Scanners

  • Im Kwang-Hee;Hsu, David K.;Sim Jae-Gi;Yang, In-Young;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.566-576
    • /
    • 2003
  • Carbon-fiber reinforced plastics (CFRP) composite laminates often possess strong in-plane elastic anisotropy attributable to the fiber orientation and layup sequence. The layup orientation thus greatly influences its properties in a composite laminate. It could result in the part being rejected or discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and to require less time than the optical test. In this paper, ultrasonic scanners were set out for different measurement modalities for acquiring ultrasonic signals as a function of in-plane azimuthal angle. The motorized scanner was built first for making transmission measurements using a pair of normal-incidence shear wave transducers. Another scanner was then built fer the acousto-ultrasonic configuration using contact transducers. A ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. We have compared the test results with model data. It is found that strong agreement are shown between tests and the model developed in characterizing cured layups of the laminates.

Flutter characteristics of a Composite Wing with Various Ply Angles (복합재료날개의 적층각에 대한 플러터 특성 연구)

  • Yoo, Jae-Han;Kim, Dong-Hyun;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.126-130
    • /
    • 2000
  • In this study, flutter characteristics of a composite wing have been studied for the variation of laminate angles in the subsonic, transonic and supersonic flow regime. The laminate angles are selected by the aspect of engineering practice such as 0, $\pm$45 and 90 degrees. To calculate the unsteady aerodynamics for flutter analysis, the Doublet Lattice Method(DLM) in subsonic flow and the Doublet Point Method(DPM) in supersonic flow are applied in the frequency domain. In transonic flow, transonic small disturbance(TSD) code is used to calculate the nonlinear unsteady aerodynamics in the time domain. Aeroelastic governing equation has been solved by v-g method in the frequency domain and also by Coupled Time-Integration Method(CTIM) in the time domain. from the results of present study, characteristics of free vibration responses and aeroelastic instabilities of a composite wing are presented for the set of various lamination angles in the all flow range.

  • PDF

Interlaminar Shear Stresses of Laminated Composite Plates Subjected to Transversely Imp (횡방향 충격을 받는 적층복합판의 층간전단응력 해석)

  • Ahn, Kook-Chan;Park, Seung-Bum;Kim, Bong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.31-37
    • /
    • 2002
  • This paper demonstrates the analyses of the interlaminar shear stress of laminated composite plates subjected to transversely impact. For this purpose, a plate finite element model based on the higher order shear deformation plate theory in conjunction with static contact laws is developed. Test materials were CFRP with cross-ply laminate $[O_4/{\theta}_4]_S$, $[90_4/{\theta}_4]_S$ stacking sequences and angle-ply laminate $[{\theta}_4/-{\theta}_4]_S$, $[{\theta}_4/-{\theta}_4]_S$ stacking deguences with $2^t{\times}40^w{\times}100^l(mm)$ dimension. As a result, stacking seguence and fiber orientation were found to have a significant effect on the interlaminar stresses in composite laminates.

Effect of Cold Temperature Dry and Elevated Temperature Wet on Mechanical Properties of CFRP Composites (냉각($-55^{\circ}C$) 및 고온다습 조건($82.2^{\circ}C$)이 탄소섬유강화 복합재의 기계적 특성에 미치는 영향 연구)

  • Kim, Hyo-Jin;Lee, Sih-Joong;Han, Sang-Ho;Kim, Sang-Kuk;Park, Seong-Jun
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.60-65
    • /
    • 2009
  • The mechanical behavior of carbon fiber reinforced polymeric (CFRP) composites was investigated. Both strength and modulus were measured at room temperature dry, cold temperature dry, $-55^{\circ}C$, and elevated temperature wet, $82.2^{\circ}C$ on seven different laminate configurations consisting of $[0_6]_T$, $[90_{12}]_T$, $[0_{16}]_T$ and $[90_{16}]_T$ unidirectional laminates, $[{\pm}45]_{5S}$ angle-ply laminate, $[0/90_{12}/0]_T$ cross-ply laminate, a 36-ply laminate $[0/45/-45/45/-45/0]_{3S}$. Based on the experimental data presented, it is shown that the strength at cold temperature dry, $-55^{\circ}C$ is increased with the brittleness of fiber or matrix. Moreover, it is shown that both shear strength and modulus at elevated temperature wet, $82.2^{\circ}C$ are decreased by the cause of interfacial deterioration between fiber and matrix with moisture absorption.

Ultrasonic Characterization on Sequences of CFRP Composites Based on Modeling and Motorized System

  • Im, Kwang-Hee;David K. Hsu;Song, Sung-Jin;Park, Je-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2004
  • Composites are a material class for which nondestructive material property characterization is as important as flaw detection. Laminates of fiber reinforced composites often possess strong in-plane elastic anisotropy attributable to the specific fiber orientation and layup sequence when waves are propagating in the thickness direction of composite laminates. So the layup orientation greatly influences its properties in a composite laminate. It could result in the part being .ejected and discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore a ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. Also in order to develop these methods into practical inspection tools, motorized system have been developed for different measurement modalities for acquiring ultrasonic signals as a function of in-plane angle. It is found that high probability shows between the model and tests developed in characterizing cured layups of the laminates.

Damage Behavior of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions (집중하중을 받는 일방향 섬유 금속 적층판의 손상 거동)

  • Nam, H.W.;Kim, Y.H.;Jung, S.W.;Jung, C.K.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.407-412
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subject to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, Acoustic Emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. Cumulative AE counts were well predicted crack initiation and crack propagation and AE amplitude were useful for prediction of damage failure mode. During the matrix cracking, fiber debonding and fiber breakage, AE amplitude has $45{\sim}60dB,\;60{\sim}80dB\;and\;90{\sim}100dB$, respectively.

  • PDF