• Title/Summary/Keyword: Angle velocity

Search Result 2,078, Processing Time 0.032 seconds

Analysis of the Relative Velocity of Friction Surface in Cone Drum False Twisting Mechanism

  • Lee, Choon Gil
    • Fashion & Textile Research Journal
    • /
    • v.2 no.5
    • /
    • pp.443-449
    • /
    • 2000
  • An investigation of the relative velocity of friction surface for the newly developed cone drum twister texturing mechanism is reported. The cone drum twister is one of the outer surface contacting friction-twisting devices in false-twist texturing. In this cone drum twister, a filament yam passes over the surface of the cone drum that rotates by passing the yarn without a special driving device. This research is theoretically composed of the analysis of the false twisting mechanism. The equations were derived by using the conical angle of the cone drum, projected wrapping angle, and yarn helix angle. Theoretical values of the relative velocity of friction surface were calculated and discussed. It is shown that, as the projected wrapping angle increased, the relative velocity of friction surface decreased. But as the conical angle increased the relative velocity of friction surface also increased.

  • PDF

Blood Flow Measurement with Phase Contrast MRI According to Flip Angle in the Ascending Aorta (위상대조도 MRI에서 숙임각에 따른 상행대동맥의 혈류 측정)

  • Kim, Moon Sun;Kweon, Dae Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.142-148
    • /
    • 2016
  • To evaluate the effect of flip angle on flow rate measurements obtained with phase contrast MRI according to the flip angle degree in ascending aorta and velocity encoding (VENC) was (150 m/s). 1.5T MRI in patients 17 (female: 8, male: 9, mean age $57.9{\pm}15.4$) as a target by applying a non-breath holding techniques to flip angle VENC (150 cm/s) in each of the ascending aorta was measured by changing $20^{\circ}$, $30^{\circ}$ and $40^{\circ}$. Blood was obtained a peak velocity, average velocity, net forward volume, net forward volume/body surface area. Ascending aorta from average velocity (AV) measured the average value of the flip angle $20^{\circ}$ (9.87 cm/s), $30^{\circ}$ (9.6 cm/s) and $40^{\circ}$ (10.05 cm/s). Blood flow VENC in was blood flow change in flip angle change was high most blood flow measurement when the flip angle $30^{\circ}$ in VENC, crouching each blood flow is also proportional to the increases in the $20^{\circ}$ to $40^{\circ}$ and was increased, the deviation of the peak velocity and the average velocity is the smallest deviation from the flip angle $30^{\circ}$. Flip angle $20^{\circ}$, $30^{\circ}$ and $40^{\circ}$ in peak velocity, average velocity, net forward volume, net forward volume/body surface area was no statistically significant difference (p > .05). Blood flow velocity and blood flow is measured by applying to adjust the flip angle accurately calculate the blood flow is important information for diagnosis and treatment of cardiovascular diseases, and can help in the examination on the blood flow measurement.

Effect of the Swirler Angle and Aspect Ratio of Nozzle on the Mean Velocity and SMD of Twin Sprays (노즐의 스월러각과 형상비가 이중분무의 평균속도와 입경의 크기에 미치는 영향)

  • Kim, Young-Jin;Jung, Ji-Won;Choi, Gyoung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1459-1466
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single and twin spray. The characteristics of sprays have been investigated by measuring the spray angle, droplet size and velocity. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber, but for the twin spray, the axial velocity and SMD were not influenced significantly by the changing the aspect ratio of swirl chamber. The effect of swirler angle on the spray characteristics was greater than the aspect ratio of swirl chamber for single spray. The nozzle pitch was one of the important factors affecting the spray characteristics of twin spray.

The Study of Aliasing and Incidence Angle Dependence of Doppler Image on Humeral Artery (상완동맥 Doppler 영상의 입사각 의존성과 Aliasing에 관한 연구)

  • Kim, Sang-Jin;Ji, Tae-Jeong
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.379-387
    • /
    • 2008
  • Among methods to eliminate aliasing effects, the method of increasing velocity scale gradually eliminated the phenomenon in which the direction of the blood flow appeared in reverse. It was done by increasing the velocity scale while maintaining other parameters in the same state. The method of setting the Doppler angle to $0^{\circ}$ did not show significant changes in the wave pattern of the spectrum according to the angle. In actual ultrasonography tests, more accurate tests are expected to be carried out by applying variations to the velocity scale under the considerations of speed, accuracy, and convenience of the examination. The results showed that blood flow velocity increases exponentially according to the Doppler Angle. When the angle goes over $70^{\circ}$, the velocity value increases to an unmeasurable state. This indicates that in blood flow velocity measurements, the blood flow velocity is very dependent on the Doppler Angle. It also shows that the error increases when the incidence angle to the direction of blood flow exceeds $60^{\circ}$, and when the angle exceeds $70^{\circ}$, the error becomes even greater. In addition, he experiment results showed that an angle below $60^{\circ}$ is appropriate and for blood flow velocity measurements in extremity vessels, the most appropriate Doppler Angle is from $45^{\circ}$ to $60^{\circ}$.

  • PDF

Comparison of the Kinematic Variables in the Badminton Smash Motion (숙련도에 따른 배드민턴 스매쉬 동작의 운동학적 변인 비교)

  • So, Jae-Moo;Han, Sang-Min;Seo, Jin-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • The purpose of this study was to analyze kinematic variables in the badminton smash motion through 3-dimensional image analysis. The kinematic variables were velocity of joints in upper limbs, the angle of wrist in the impact, and the angular velocity of the top of racket head. The smash motions of four male badminton players in H University and four male students at department of the physical education in K University who were not majoring in badminton were analyzed kinematically and the attained conclusions were as follow. 1. The velocity of segments in upper limbs of the unskilled group was faster than that of the skilled group. The movement pattern was fast back swing-slow impact moment-fast fellow through in the unskilled group, but slow back swing-fast impact moment-slow follow through in the sullied group. 2. As the BS phases, the velocity of segment in right shoulder was different significantly between groups. Right elbow and right wrist segments, velocity of racket head was different significantly between groups(p<.05) by IP phases. As the FT phases, there was no significant difference. 3. The angle of right wrist at the impact, the angle of palm flexion and the angle of palm flexion in aspect were shown that the skilled group was higher than unskilled group. There was no significant difference. 4. The velocity of racket head was shown that the unskilled group has fast velocity, but the angle velocity was shown the unskilled group has slow. 5. The angle velocity of racket head in aspect were no significant difference between groups, but maximal angle velocity was different significantly between groups(p<.05).

Theoretical investigation about the hydrodynamic performance of propeller in oblique flow

  • Hou, Lixun;Hu, Ankang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.119-130
    • /
    • 2019
  • This paper establishes an iterative calculation model for the hydrodynamic performance of propeller in oblique flow based on low order potential based surface panel method. The hydrodynamic performance of propeller is calculated through panel method which is also used to calculate the induced velocity. The slipstream of propeller is adjusted according to the inflow velocity and the induced velocity. The oblique flow is defined by the axial inflow velocity and the incident angle. The calculation results of an instance show that the thrust and torque of propeller decrease with the increase of axial inflow velocity but increase with the incident angle. The unsteadiness of loads on the propeller blade surface gets more intensified with the increases of axial inflow velocity and incident angle. However, comparing with the effect of axial inflow velocity on the unsteadiness of the hydrodynamic performance of propeller, the effect of the incident angle is more remarkable.

A study on the Velocity Distribution of the Liquid Sheet Formed by Two Impinging Jets at Low Velocities (저속 충돌제트에 의해 형성되는 액막의 속도 분포에 관한 연구)

  • Choo, Yeon-Jun;Kang, Bo-Seon
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.728-733
    • /
    • 2000
  • In this research, the velocity distribution of the liquid sheet formed by two impinging jets at low velocities are measured using LDV. The spatial distribution of the sheet velocity as well as the effects of impinging angle and jet velocity are examined. The sheet velocity is the highest along the sheet axis and it decreases with the increase of the azimuthal angle. With the increase of the impinging angle, however, the difference of sheet velocity on the liquid sheet is decreased. The average sheet velocity is proportional to the jet velocity but it is always higher than the jet velocity as against the fact that the sheet velocity can be assumed to be equal to the jet velocity in the previous researches.

  • PDF

The Effects of Upper Limb, Trunk, and Pelvis Movements on Apkubi Momtong Baro Jireugi Velocity in Taekwondo

  • Yoo, Si-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.273-284
    • /
    • 2016
  • Objective: The purpose of this study was to investigate effects of upper limb, trunk, and pelvis kinematic variables on the velocity of Apkubi Momtong Baro Jireugi in Taekwondo. Method: Twenty Taekwondo Poomsae athletes (age: $20.8{\pm}2.2years$, height: $171.5{\pm}7.0cm$, body weight: $66.2{\pm}8.0kg$) participated in this study. The variables were upper limb velocity and acceleration; trunk angle, angular velocity, and angular acceleration; pelvis angle, angular velocity, and angular acceleration; and waist angle, angular velocity, and angular acceleration. Pearson's correlation coefficient was calculated for Jireugi velocity and kinematic variables; multiple regression analysis was performed to investigate influence on Jireugi velocity. Results: Angular trunk acceleration and linear upper arm punching acceleration had significant effects on Jireugi velocity (p<.05). Conclusion: We affirmed that angular trunk acceleration and linear upper arm punching acceleration increase the Jireugi velocity.

Monitoring System Design for Estimating Lateral Velocity and Sideslip Angle (감지시스템을 통한 차량의 횡 속도 및 슬립각 추정)

  • Han, Sang-Oh;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • Information of the lateral velocity and the sideslip angle in a vehicle is very useful in many active vehicle safety applications such as yaw stability control and rollover prevention. Because cost-effective sensors to measure the lateral velocity and the sideslip angle are not available, reliable algorithms to estimation them are necessary. In this paper, a sliding mode observer is designed to estimate the lateral velocity. The side slip angle is estimated using the recursive least square with the disturbance observer and the pseudo integral. The estimated parameters from the combined estimation method are updated recursively to minimize the discrepancy between the model and the physical plant, and any possible effects caused by disturbances. The performance of the proposed monitoring system is evaluated through simulations and experiments.

Analysis of kinematics in gait motions on different grades and speeds of treadmill gait (트레드밀 보행시 경사도와 속도에 따른 보행형태의 운동학적 분석)

  • Cho, Kyu-Kwon;Kim, You-Sin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.155-171
    • /
    • 2002
  • The purpose of this study was to provide basic data for a form of gait by comparing and analyzing gait motions on different grades and speeds. In order to accomplish the purpose, 6 university students, whose ages between 20 - 25, were selected. They have gaited on 3Km/h, 4Km/h, 5Km/h of speed and 4 video cameras were used to film them. The speed of filming was 60 frame / seconds. The special variations of kinematics in gait were fixed with ankle joint angle, knee joint angle, hip joint angle, ankle angular velocity, knee angular velocity and hip angular velocity. In this study, the SPSS 10.0 for windows statistical package was used to operate on significant level of .05 for statistical management. From the result of this study, we have succeeded to obtain following conclusions; 1. As the speed increased, the value of ankle joint angle increased. Also the value of ankle joint angle was larger on decline than on incline. 2. As the speed increased, the value of knee joint angle was increased. 3. As the speed increased, the value of hip joint angle was decreased. 4. As the speed increased, the value of ankle angular velocity increased. And the value of ankle angular velocity became higher on decline than on incline. 5. The value of knee angular velocity showed higher on decline than on incline. 6. As the speed increased, the value of hip angular velocity was increased. Also the value of hip angular velocity became higher on incline than on decline.