• Title/Summary/Keyword: Angle of assumption

Search Result 158, Processing Time 0.027 seconds

Engagement Level Simulator Development for Wire-Guided Torpedo Performance Analysis (선유도어뢰 전술 효과도 분석을 위한 교전수준 모델 개발 연구)

  • Cho, Hyunjin
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This paper introduces the simulation concepts and technical approach of wire-guided torpedo performance analysis simulator, as a consequence, provide a framework for understanding overall attack procedures and effectiveness of tactics to torpedo operator. It described the mathematical models of simulation components and weapon engagement principle, especially it derived the closed-form solution of time consumption and leading angle problem of torpedo attack situation based on geographical assumption. In addition, it adopted the proportional navigation guidance at final stage of torpedo attack and also consider the tradeoff relation between target ship speed(propeller noise level) and detection probability, so that it improves the fidelity of physical realism. Simulator is developed with high degree of freedom in the perspective of tactical situation, and it helps user to understand the overall situation and tactical effectiveness.

Wave Deformation and Blocking Performance by a Porous Dual Semi-Cylindrical Structure (투과성 이중 반원통 구조물에 의한 파 차단성능)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • The interaction of oblique incident waves with a porous dual semi-cylindrical structure is investigated under the assumption of linear potential theory. The porous dual semi-cylindrical structure consists of two concentric bottom-mounted cylindrical structures that are porous in front half and transparent in back half. By changing porosity, gap, and wave characteristics(wave frequencies, incidence angle), the wave blocking performance as well as the wave loads and the wave run-up are obtained. As a convenient measure of overall wave blocking performance, the root mean square(R.M.S.) of the wave elevation in a sheltered region is used. It is found that the porous semi-cylindrical structure may significantly reduce the wave response in a sheltered region and the wave forces decrease largely compared to the impermeable structure. The dual structure is more effective in reducing the wave response in a sheltered region than the mono type in the region of high frequencies.

Optimum Missile Attitude to Minimize Radar Exposure at a High Altitude (고고도에서의 피탐성 최소화 유도탄 최적자세 연구)

  • Moon, Kyujin;Jeong, Ui-Taek;Kim, JeongHun;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.865-873
    • /
    • 2019
  • To improve the survivability of a missile, it needs to be lowered that the detection possibility by radars on the ground. The radar exposure of the target is given as a function of relative distance from the radar to the target and RCS (Radar Cross Section). The RCS of the missile is determined by the incidence angle of the target to electromagnetic radiation emitted from the radar. Under the assumption that the missile equips appropriate attitude control system, the attitude of the missile to minimize radar exposure at a high altitude is investigated in this paper. Two different types of performance cost are considered: the total sum of RCS and the total sum of SNR during the flight. Optimal solutions against multiple ground radars are found by using a SQP (Sequential Quadratic Programming)-based optimization technique.

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스뎀의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Changduk;Park Jongha;Yang Sooseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • In order to investigate transient behavior, of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1km, flight Mach number 0.1 and maximum engine rpm.

A Study on the Seismic Performance Improvement of Mid and Low-Rise RC Grid Structures Using Steel Slab Hysteretic Damper (강재 슬래브 이력형 댐퍼(SSHD)를 이용한 중·저층 RC 격자 구조물의 내진성능 향상에 관한 연구)

  • Kim, Dong Baek;Lee, In Duk;Choi, Jung Ho
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.418-426
    • /
    • 2019
  • Purpose: After analyzing the seismic capability of low-rise RC grid structures with insufficient seismic performance, the purpose of the project is to install steel slab hysteretic dampers (SSHD) to improve the seismic performance of beams and columns, and to suggest measures to minimize damage to the structure and human damage when an earthquake occurs. Method: The evaluation of the seismic performance of a structure is reviewed based on the assumption that the seismic performance is identified for the grid-type subway systems that are not designed to be seismic resistant and the installation of an SSHD system, a method that minimizes construction period, if insufficient, is required. Result: After the application and reinforce of structure with SSHD, and the results of eigenvalue analysis are as follows. The natural periodicity of longitudinal direction was 0.55s and that of vertical direction was 0.58s. Conclusion: As results of cyclic load test of structure with SSHD, the shear rigidity of damper is 101%, the energy dissipation rate is 108% and, plastic rotation angle of all column and beam is satisfied for $I_o$ level and therefore it is judged that the reinforce effect is sufficient.

3-Axis Modeling and Small Angle Maneuver Including Vibration Suppression for a Satellite (인공위성의 3축 모델링과 진동억제를 포함한 소각선회)

  • Lee, D.W.;Cho, K.R.
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.103-113
    • /
    • 2000
  • There are several methods in the mathematical modeling of a satellite with flexible appendages. In this paper, the hybrid Lagrange's equations of motion using assumed modes method are derived. The assumed modes method is one of approximate methods which have shorter calculation time due to low-dimension compare with FEM. These consist of three-equations about angular velocities and two-equations about flexible deformations, and physically represent interaction between hub and solar panel. In an attitude control, a control law is designed to minimize a given performance index considering not only control input but also vibration suppression. For these purpose, this paper applies LQG and LQG/LTR schemes to this model and finally show the capability for attitude control including vibration suppression. Especially, this paper shows the method of assumption as nonsingular system through singular value division for LQG/LTR design.

  • PDF

Hydroelastic Responses of Floating Structure by Modeling Dimensions (부유구조물의 모델링 차원에 따른 유탄성 응답)

  • Hong, Sanghyun;Hwang, Woongik;Lee, Jong Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.285-292
    • /
    • 2016
  • In this study, FE-BE direct coupling methods of 1D and 2D problems are considered for the pontoon-type floating structure and the difference of the modeling dimensions is investigated for the hydroelastic response. The modeling dimensions are defined as the 1D problem consisting 1D beam-2D fluid coupling and the 2D problem consisting 2D plate-3D fluid coupling with zero-draft assumption. For case studies, hydroelastic responses of the 1D Problem are compared to those of the 2D Problem for a wide range of aspect ratio and regular waves. It is shown that the effects of the elastic behavior are increased by decreasing the incident wavelength, whereas the effects of the rigid behavior are increased by increasing the incident wavelength. In 2D problem, the incident wave angle can be considered, and slightly more accurate results can be obtained, but the computational efficiency is lower. On the other hand, in 1D problem with plate-strip condition, the incident wave angle cannot be considered, but when the aspect ratio is large, the overall responses can be analyzed through a simplified model, and the computational efficiency can be improved.

Reflection and Transmission Coefficients by a Surface-Mounted Horizontal Porous Plate (수면 위에 놓인 수평 유공판에 의한 반사율과 투과율)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.327-334
    • /
    • 2013
  • The interaction of oblique incident waves with a surface-mounted horizontal porous plate is investigated using matched eigenfunction expansion method under the assumption of linear potential theory. The new boundary condition on the porous plate suggested by Zhao et al.(2010) when it is situated at the still water surface is used. The imaginary part of the first propagating-mode eigenvalue in the fluid region under a horizontal porous plate, is closely related to the energy dissipation across the porous plate. By changing the porosity, plate width, wave frequencies, and incidence angles, the reflection and transmission coefficients as well as the wave loads on the porous plate are obtained. It is found that the transmission coefficients can be significantly reduced by selecting optimal porous parameter b = 5.0, also increasing the plate width and incidence angle.

Active Window system based on Finite Thickness Window Model (유한 두께 창문 모델을 적용한 능동 소음제어 창문)

  • Kwon, Byoung-Ho;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.763-768
    • /
    • 2012
  • Active window system which can reduce the environmental noises, such as traffic noise and construction noise, from an open window into a room was proposed in the previous works. The key idea of the proposed active window system was that the control sources are approximately collocated with the primary noise source in terms of the acoustic power for global noise reduction throughout the interior room. Moreover, because it is important not to intrude into the living space in the building environment, no error sensors were used and an open-loop control method using control sources at the window frame and the reference sensors outside the room was used for the proposed system. The open-loop control gain was calculated by the interior room model assumed as the semi-infinite space, and the interior sound field was estimated by Rayleigh integral equation under the baffled window model assumption. However, windows with a finite thickness should were considered for the calculation of the open-loop control gain of the active window system since these are representative of most window cases. Therefore, the finite thickness window model based on the Sgard's model was derived and the open-loop control gain using the interior sound field estimated by that model was calculated for active window system. To compare the performance of these two models, a scale-model experiment was performed in an anechoic chamber according to noise source directions. Experimental results showed that the performance for the thickness window model is better than the baffled window model as the angle with respect to the perpendicular direction is larger.

  • PDF

Derivation of a 3D Arching Formula for Tunnel Excavation in Anisotropic Ground Conditions and Examination of Its Effects (비등방 지반에서 터널굴착을 위한 3차원 아칭식의 유도 및 그 영향 조사)

  • Son, Moorak
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.19-27
    • /
    • 2018
  • Terzaghi proposed a 2D formula for arching based on the assumption of a vertical sliding surface induced in the upper part due to the downward movement of a trapdoor. The formula was later expanded to consider 3D tunnel excavation conditions under inclined sliding surfaces. This study further extends the expanded formula to consider the effects of different ground properties and inclined sliding conditions in the transverse and longitudinal directions considering anisotropic ground conditions, as well as 3D tunnel excavation conditions. The 3D formula proposed in this study was examined of the induced vertical stress under various conditions (ground property, inclined sliding surface, excavation condition, surcharge pressure, earth pressure coefficient) and compared with the 2D Terzaghi formula. The examination indicated that the induced vertical stress increased as the excavation width and length increased, the inclination angle increased, the cohesion and friction angle decreased, the earth pressure coefficient decreased, and the surcharge pressure increased. Under the conditions examined, the stress was more affected at low excavation lengths and by the ground properties in the transverse direction. In addition, The comparison with the 2D Terzaghi formula showed that the induced vertical stress was lower and the difference was highly affected by the ground properties, inclined sliding conditions, and 3D tunnel excavation conditions. The proposed 3D arching formula could help to provide better understanding of complex arching phenomena in tunnel construction.