• Title/Summary/Keyword: Angle fracture

Search Result 631, Processing Time 0.03 seconds

THE EFFECT OF CYCLIC LOADING ON THE RETENTIVE STRENGTH OF FULL VENEER CROWNS (반복 하중이 Full veneer crown의 유지력에 미치는 영향에 관한 연구)

  • Kim, Ki-Youn;Lee, Sun-Hyung;Chung, Hun-Young;Yang, Jae-Ho;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.583-594
    • /
    • 2000
  • Dislodgement of a crown or extension bridge and the loosening of a retainer of a bridge is a serious clinical problem in fixed restoration. Generally these problems are considered to be associated with deformation of the restoration. During biting, the restoration is subjected to complex forces and deforms considerably within the limit of its elasticity. Deformation of the restoration under the occlusal force induces excessive stress in the cement film, which then leads to the cement fracture. Such a fracture may eventually cause loss of the restoration. Because most of the past retention tests for full veneer crown were done without fatigue loading, they were not exactly simulating intraoral environment. And the purpose of this study was to evaluate the effect of cyclic cantilever loading on the retentive strength of full veneer crowns depending on different type of cements and taper of prepared abutment. Steel dies with $8^{\circ}\;or\;16^{\circ}$ convergence angle were fabricated through milling and crowns with the same method. These dies and crowns were divided into 8 groups. Group 1 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 2 : $16^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 3 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, without loading Group 4 : $8^{\circ}$ taper die, cementation with zinc phosphate cement, with loading Group 5 : $16^{\circ}$ taper die, cementation with Panavia 21, without loading Group 6 : $16^{\circ}$ taper die, cementation with Panavia 21, with loading Group 7 : $8^{\circ}$ taper die, cementation with Panavia 21 without loading Group 8 : $8^{\circ}$ taper die, cementation with Panavia 21, with loading After checking the fit of die and crown, the luting surface of dies and inner surface of crowns were air-abraded for 10 seconds. The crowns were cemented to the dies, with cements mixed according to the manufacturer's recommendations. A static load of 5kg was then applied for 10 minutes with static loading device. Twenty-four hours later, group 1, 3, 5, 7 were only thermocycled, group 2, 4, 6, 8 were subjected to cyclic loading after thermocycling. Retentive tests were performed on the Instron machine. From the finding of this study, the following conclusions were obtained 1. Panavia 21 showed significantly higher retentive strength than zinc phosphate cement for all groups (p<0.05). 2. There was a significant difference in the retentive strength between $8^{\circ}\;and\;16^{\circ}$ taper for zinc phosphate cement(p<0.05), but no significant difference for Panavia 21 (p>0.05). 3. Cyclic loading significantly decreased the retentive strength for all groups(p<0.05). 4. For zinc phosphate cement, there was 35% reduction of the retentive strength after loading in the $16^{\circ}$ taper die, 25% in the $8^{\circ}$ taper die, and for Panavia 21, 21% in the $16^{\circ}$ taper die, 18% in the $8^{\circ}$ taper die.

  • PDF

INFLUENCE OF IMPLANT-ABUTMENT INTERFACE DESIGN, IMPLANT DIAMETER AND PROSTHETIC TABLE WIDTH ON STRENGTH OF IMPLANT-ABUTMENT INTERFACE : THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS (임플랜트의 지대주 연결방식, 임플랜트의 직경 및 지대주 연결부위의 직경 차이에 따른 응력분포에 관한 삼차원 유한요소분석)

  • Oh Se-Woong;Yang Jae-Ho;Lee Sun-Hyung;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.393-404
    • /
    • 2003
  • Statement of problem. Higher incidence of prosthetic complications such as screw loosening, screw fracture has been reported for posterior single tooth implant. So, there is ongoing research regarding stability of implant-abutment interface. One of those research is increasing the implant diameter and prosthetic table width to improve joint stability. In another part of this research, internal conical type implant-abutment interface was developed and reported joint strength is higher than traditional external hex interface. Purpose. The purpose of this study is to compare stress distribution in single molar implant between external hex butt joint implant and internal conical joint implant when increasing the implant diameter and prosthetic table width : 4mm diameter, 5mm diameter, 5mm diameter/6mm prosthetic table width. Material and method. Non-linear finite element models were created and the 3-dimensional finite element analysis was performed to see the distribution of stress when 300N static loading was applied to model at $0^{\circ},\;15^{\circ},\;30^{\circ}$ off-axis angle. Results. The following results were obtained : 1. Internal conical joint showed lower tensile stress value than that of external hex butt joint. 2. When off-axis loading was applied, internal conical joint showed more effective stress distribution than external hex butt joint. 3. External hex butt joint showed lower tensile stress value when the implant diameter was increased. 4. Internal conical joint showed lower tensile stress value than external hex butt joint when the implant diameter was increased. 5. Both of these joint mechanism showed lower tensile stress value when the prosthetic table width was increased. Conclusion. Internal conical joint showed more effective stress distribution than external hex joint. Increasing implant diameter showed more effective stress distribution than increasing prosthetic table width.

A Clinicostatistical Study of 677 Mandibular Fractures (하악골 골절 667 증례의 임상통계학적 분석)

  • Lee, Sang-Han;Lee, Seoung-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.11 no.1
    • /
    • pp.50-62
    • /
    • 1989
  • This is clinicostatistical study of mandibular fractures. This study was based on a series of 677 patients with mandibular fracture during the period of 1982 to 1987. This results obtained were as follows : 1. In respect of incidence, there were high frequency in May and September, and in large city(63%). 2. The age frequency was the highest in the 20s-year old group (38.7%), and the ratio of male to female was 4.64 : 1. 3. The most common etiologic factor was blow(31.5%), but in children that was traffic accident followed by fall down. 4. The most common site of bone fractures was symphysis, followed by angle, condyle. In comparison of right and left sides, left side was more frequently involved(364 cases) than right side(257 cases). 5. The patients arrived in hospital immediately within 24 hours after accident were 62.9% of all, and 42.4% was arrived via private medical and dental clinic. 6. In respect of treatment, open reduction was 55.5% of all, closed reduction was 37.2%. In children, closed reduction was done in 50.6%.

  • PDF

A THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF SINGLE IMPLANT PROSTHESES ACCORDING TO THE HEX-LOCK TYPE (단일 임플랜트 보철물의 Hex-lock 형태에 따른 3차원 유한요소법적 응력분석)

  • Hwang, Young-Pil;Kay, Kee-Sung;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.385-402
    • /
    • 1996
  • The purpose of this study was to analyze how the stability of the implant prostheses and the loosening of the fastening screw was affected when the various types of Hex structure provided for the effect of anti-rotation of the single prostheses were given. Three dimensional finite element model was designed with which the implants with the external hex type of 0.75mm, 1.5mm and the implant with the internal hex type of 0.75mm, 1.5mm and the implant with the external hex type of $15^{\circ}$ tapered shape of 0.75mm were supposed to completely osseointegrate to the mandible. After fininshing the finite element model, the preload of 10N at the fastening screw was applied and then the vertical and $30^{\circ}$ lateral load of 200N was applied respectively at the cusp tips of the prostheses. The following results were obtained : 1. In case of displacement, the amount of displacement was increased at the internal hex type(model C, D) than at the external hex type(model A, B, E) when the vertical and lateral load was applied. 2. Less equivalent stress was represented at the model B with increased external hex height than at the model A when the vertical and lateral load was applied. 3. Much stress was represented at the model E with increased hex angle than at the model A in case of the stress happened to the implant body and the fastening screw when the vertical and lateral load was applied. 4. Much equivalent stress was represented at the model D with deepened internal hex height than at the model C when vertical and lateral load was applied. 5. The least stress was taken at the model B and the most stress was taken at the model D in case of the stress happened to the implant when the vertical and lateral load was applied. 6. The least stress was taken at the model C at the vertical load. And the least stress was taken at the model B at lateral load in case of the stress happened to the fastening screw. As a results of this study, the good lateral stability of prostheses and less stress of the component of implant was taken when the external hex height was increased, and the risk of neck fracture of implant and fastening screw was increased when the internal hex height was deepned because of long screw neck portion and thin implant neck portion.

  • PDF

Subsurtace Geological Structure of the Downstream Area of the Jangsung Lake (장성호 하류지역의 지하지질구조)

  • 김성균;김용준;오진용;김민선;서구원
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.101-112
    • /
    • 1997
  • Gravity and electrical resistivity surveys were carried out across the Kwangju fault in the downstream area of the Jangsung Lake, to investigate the location and geometrical feature of the fault. In the resistivity survey, dipole - dipole array method was adopted for 3 survey lines of which length and electrode spacing are 500m and 25m, respectively. Resistivity data are interpreted with aid of computer program "RESIS" which is widely used in resistivity data analysis and two dimensional resistivity profiles are obtained for 3 survey lines. Two large fracture zones relevant to the Kwangju fault are identified in the resistivity profiles. The total of 80 gravity data are observed with the mean spacing of 40 m and the exact leveling is accompanied to obtain more precise gravity anomalies. The subterranean density discontinuities calculated from the inverse method are appeared at the depths of 650rn and 120m. It is considered that the deep discontinuity indicates boundary between Jurassic granites and oveflying Cretaceous tuff formation. while, the shallow discontinuity is interpreted to be a boundary between alluvial deposits and basements. The subsurface geological structure to satisfy the observed Bouguer anomaly is determined from the iterative forward method in which results from existing surface geological informations, the inverse method, and from the resistivity interpretations are employed as an iuitial model. In conclusion, Kwangju fault is appeared to be a high angle normal fault mainly formed in tension stress filed.

  • PDF

Collision Strength Assessment for Double Hull Type Product Carrier Using Finite Element Analysis (이중 선체 화학 운반선의 충돌 강도 평가)

  • Paik, Jeom-Kee;Lee, Jae-Myung;Lee, Kyung-Ern;Won, Suk-Hee;Kim, Chelo-Hong;Ko, Jae-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.481-489
    • /
    • 2004
  • Ship collisions and grounding continue to occur regardless of continuous efforts to prevent such accidents. With the increasing demand for safety at sea and for protection of the environment, it is of crucial importance to be able to reduce the probability of accidents, assess their consequences and ultimately minimize or prevent potential damages to the ships and the marine environment. Numerical simulations for actual collision problem are conducted with a special attention with respect to finite element size, fracture criteria and material properties, which require a careful consideration to improve the accuracy. A parametric analysis varying colliding speed, angle, design loading condition is conducted using nonlinear finite element analysis method for 46,00 dwt Product/chemical carrier. The relationship between the absorbed energy and indentation are derived quantitatively using the insights observed from this study, and a novel design concept for assessing the anti-collision performance are proposed.

Analysis on Femoral Neck Fractures Using Morphological Variations (파라메트릭 형상모델을 이용한 근위 대퇴골의 경부 골절 영향 해석)

  • Lee, Ho-Sang;Park, Byoung-Keon;Chae, Je-Wook;Kim, Jay-Jung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.459-465
    • /
    • 2011
  • It has been reported that the femoral morphology has a major correlation to femoral neck fractures(FNF). Previous studies to analyze these correlations have relied on mechanical testing and finite element methods. However, these methods have not been widely applied to various femur samples and models. It is because of the availability of the samples from both patients and cadavers, and also of the geometric limitations in changing the shape of the models. In this study we analyzed femoral neck fractures using a parameterized femoral model that could provide flexibility in changing the geometry of the model for the wide applications of FNF analysis. With the parameterization a variety of models could be generated by changing four major dimensions: femoral head diameter(FHD), femoral neck diameter(FND), femoral neck length(FNL), and neck-shaft angle(NSA). We have performed FEA on the models to compute the stress distributions and reaction forces, and compare them with the data previously generated from mechanical testing. The analysis results indicate that the FND is significantly related with the FNF and the FHD is not significantly related with the FNF.

Cyclic Loading Test for TSC Beam - PSRC Column Connections (TSC 합성보 - PSRC 합성기둥 접합부에 대한 주기하중 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the present study, details of the TSC beam-to-PSRC column connection for low and middle seismic zones were developed. For ease construction, the top and bottom flanges of the steel section of the TSC beam were discontinuous at the joint face on purpose, while the web passes through the joint. Thus, tensile resistance of the top and bottom flanges is not considered in the calculation of nominal strength of the connection. Cyclic loading tests on two interior connections and an exterior connection were performed to verify the seismic performance. The test parameter for two interior connections was the depth of the TSC beams: 600 and 700 mm including the slab depth. The test results showed that the nominal strength of the connections predicted by KBC 2009 correlated well with the test results. The connection specimens exhibited relatively good deformation and energy dissipation capacities, greater than the requirements for the ordinary and intermediate moment frames. Ultimately, the connection specimens were failed at the story drift ratios of 3.0 to 4.0 % due to local buckling and tensile fracture of the web of the TSC beam passing through the joint. By modifying the existing provisions of ASCE, the joint shear strength of the TSC beam-PSRC column connection was evaluated.

3D analysis of fracture zones ahead of tunnel face using seismic reflection (반사 탄성파를 이용한 터널막장 전방 파쇄대의 3차원적 예측)

  • Lee, In-Mo;Choi, Sang-Soon;Kim, Si-Tak;Kim, Chang-Ki;Jun, Jea-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.301-317
    • /
    • 2002
  • Recently, a geophysical exploration technology is frequently utilized in the civil engineering field as well as in the resource exploration. It might be important for civil engineers to understand the fundamental theory of seismic survey and limitation of the technique when utilizing these techniques in the civil engineering field. A 3-dimensional migration technique based on the principle of ellipsoid to predict the fractured zone ahead of tunnel face utilizing the tunnel seismic survey was proposed so that the geometry of the fractured zone can be estimated, i.e. the angle between tunnel axis and discontinuity zone, and the dip. Moreover, a numerical analysis technique to simulate the TSP (Tunnel Seismic Prediction) test was proposed in this paper. Based on parametric studies, the best element size, the analysis time step, and the dynamic characteristics of pressure source were suggested to guarantee the stability and accuracy of numerical solution. Example problems on a hypothetical site showed the possibility that the 3-dimensional migration technique proposed in this paper appropriately estimate the 3D-geometry of fractures ahead of tunnel face.

  • PDF

Influence of Various Parameter for Nonlinear Finite Element Analysis of FRP-Concrete Composite Beam Using Concrete Damaged Plasticity Model (콘크리트 손상 소성모델을 이용한 FRP-콘크리트 합성보의 비선형 유한요소해석에서 여러 변수들의 영향)

  • Yoo, Seung-Woon;Kang, Ga-Ram
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.697-703
    • /
    • 2017
  • This paper examines the flexure behavior of FRP-concrete composite structure that can replace conventional reinforced concrete structure types. In order to investigate the structural performance and behavioral characteristics in numerical analysis means, ABAQUS, a general purpose finite element analysis program, was utilized for nonlinear finite element analysis, and the various variables and their influences were analyzed and compared with experimental results to suggest values optimized to this composite structure. The concrete damage plasticity model and Euro code for concrete were used. In the implicit finite element analysis, the convergence was ambiguous when geometrical and material nonlinearity were large, so the explicit finite element analysis used in this study was deemed to be appropriate. From the comparison with the experiment about concrete damaged plasticity model, 20mm for the mesh size, $30^{\circ}$ for the dilation angle, $100Nmm/mm^2$ for the value of fracture energy, 0.667 for Kc value, and the consideration of damage parameter were suggested believed to be appropriate. The numerical model suggested in this study was able to imitate the ultimate load and cracking pattern very well; therefore, it is expected to be utilized in research of various new material composite structures.