• Title/Summary/Keyword: Angle fracture

Search Result 636, Processing Time 0.025 seconds

Modified high-submandibular appraoch for open reduction and internal fixation of condylar fracture: case series report

  • Lee, Sung-Jae;Chun, Young-Joon;Lee, Seung-Jun;Jun, Sang-Ho;Song, In-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.48 no.5
    • /
    • pp.267-276
    • /
    • 2022
  • Objectives: Recently a modified high-submandibular approach (HSMA) has been introduced for treatment of condylar fracture. This approach involves an incision line close to the mandibular angle and transmasseteric transection, leading to a low incidence of facial palsy and allowing good visualization of the condyle area, especially the condylar neck and subcondyle positions. This study reports several cases managed with this modified HSMA technique for treating condylar fractures. Materials and Methods: Six cases of condylar fractures treated with modified HSMA technique were reviewed. Results: Three unilateral subcondylar fracture, 1 bilateral subcondylar fracture, 1 unilateral condylar neck fracture, 1 unlateral simultaneous condylar neck and subcondylar fracture cases were reviewed. All the cases were successfully treated without any major complication. Conclusion: Reduction, fixation, and osteosynthesis of condylar fractures via the modified HSMA technique enabled effective and stable treatment outcomes. Therefore, the described approach can be used especially for subcondylar and condylar neck fractures with minimal complications.

Effect on Axial Rake Angle of Cutting Edge for Machinable Ceramics (절삭 선단의 축 방향 경사각이 가공성 세라믹에 미치는 영향)

  • Jang, Sung-Min;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.7-12
    • /
    • 2009
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. Generally, ceramics are machined using conventional method such as grinding and polishing. However these processes are generally costly and have low MRR(material removal rate). To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 10 and 15%. The purpose of this study is an analysis of endmill's rake angle for appropriate tools design and manufacturing for the machinable ceramics. In this study, Experimental works are executed to measure cutting force, surface roughness, tool fracture, on different axial rake angle of endmills. Cutting parameters, namely, feed, cutting speed and depth of cut are used to accomplish purpose of this paper. Required experiments are performed, and the results are investigated.

Isolated Pore Generation Mechanism and Mechanical Properties in MAS System with 3Y-TZP (MAS계에서 3Y-TZP 첨가에 따른 독립 기공 생성기구와 기계적 성질)

  • 최성철;박현철
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.881-890
    • /
    • 1993
  • MAS system has narrow sintering temp. range due to the liquid phae sintering and thereby densify rapidly. And especially, its poor mechanical properties limitedthe industrial application. In this study, the improvement of mechanical properties and densification is suggested by the consideration of the toughening mechanisms and isolated pore generation mechanism which is derived by the liquid phase sintering theory in 3Y-TZP added composites. After Pressureless sintering up to 140$0^{\circ}C$ for 5hr, the dihedral angle and contact angle are analyzed by the observation of microstructure. As a result of microstructure analysis, the sintering stage of the specimen sintered for 5hr is analyzed as solid-skeleton stage. And the isolated pore generation mechanisms are considered as (1) The swelling of the liquid phase is predominent due to the facts that dihedral angle is larger than 60$^{\circ}$, contact angle is large and that liquid volume fraction is smaller than 10%. (2) The porous characteristics of the MAS system is also suggested as: the SiO2-rich liquid film is firstly formed at the srface and therefore this reduces the contiguity of the pore, which induces the isolated pore. The strength and fracture toughness increased with the addition of 3Y-TZP and the main fracture toughness improvement mechanisms are analyzed as the crack deflection.

  • PDF

Factors in Selection of Surgical Approaches for Lower Lumbar Burst Fractures (하부 요추 방출 골절의 수술방법 결정시 고려 요인들)

  • Jahng, Tae-Ahn;Kim, Jong-Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.1055-1062
    • /
    • 2000
  • Objectives : Burst fracture of the lower lumbar spine(L3-L5) is rare and has some different features compare to that of thoracolumbar junction. Lower lumbar spine is flexible segments located deeply, and has physiologic lordosis. All of these contribute to making surgical approach difficult. Generally, lower lumbar burst fracture is managed either anteriorly or posteriorly with various fixation and fusion methods. But there is no general guideline or consensus regarding the proper approach for such lesion. We have tried to find out the influencing factors for selecting the surgical approach through the analysis of lower lumbar burst fractures treated for last 4 years(1994.3-1998.3). Method : This study includes 15 patients(male : 10, female : 5, age range 20-59 years with mean age of 36.7 years, L3 : 8 cases, L4 : 5 cases, L5 : 2 cases). Patients were classified into anterior(AO) and posterior operated(PO) groups. We investigated clinical findings, injured column, operation methods, and changes in follow-up radiologic study (kyphotic angle) to determine the considerable factors in selecting the surgical approaches. Results : There were 5 AO and 10 PO patients. Anterior operation were performed with AIF with Kaneda or Z-plate and posterior operation were done with pedicle screw fixation with PLIF with cages or posterolateral fusion. Canal compression was 46.6% in AO and 38.8% in PO. The degree of kyphotic angle correction were 10.7 degree(AO) and 8.5 degree(PO), respectively. There was no statistical difference between anterior and posterior operation group. All patients showed good surgical outcome without complications. Conclusion : Anterior operation provided good in kyphotic angle correction and firm anterior strut graft, but it difficulty arose in accessing the lesions below L4 vertebra. While posterior approach showed less correction of kyphotic angle, it required less time and provided better results for accompanied adjacent lesion and pathology such as epidural hematoma. The level of injury, canal compression, biomechanics, multiplicity, and pathology are considered to be important factors in selection of the surgical approach.

  • PDF

Influence of Impact Angle on Deformation in Proximal Femur during Slide Falling (측방 낙상시의 충격 각도가 대퇴골 근위부의 변형에 미치는 영향)

  • 김병수;배태수;김정규;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.233-239
    • /
    • 2003
  • Falling related injuries are categorized as the most serious and common medical problems experienced by the elderly, hip joint fracture, one of the most serious consequences of falling in the elderly, occurs in only about 1% of falling. Nevertheless, hip fracture accounts for a considerable part of the disability, death, and medical costs associated with falling. In this study, we considered the impact angle and displacement rate in falling as another factor affecting femoral strength. Using a fresh-frozen human femur, we developed system to simulate the falling condition and then conducted the experiments changing the impact angle (0$^{\circ}$, 15$^{\circ}$, 30$^{\circ}$) of proximal femur. Also, in order to analyze the relative risk due to falling to normal situation in proximal femur, we did the static test simulating the two-legged stance condition. The results showed that the change in impact angle affected the strain distribution in proximal femur, and that a large deformation in femoral neck than in other sites. Furthermore despite low impact velocity, a large deformation in proximal femur occurred in the impact test and different strain distribution was observed compare to the static case.

Controlling Factors on the Development and Connectivity of Fracture Network: An Example from the Baekildo Fault in the Goheung Area (단열계의 발달 및 연결성 제어요소: 고흥지역 백일도단층의 예)

  • Park, Chae-Eun;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.615-627
    • /
    • 2021
  • The Baekildo fault, a dextral strike-slip fault developed in Baekil Island, Goheung-gun, controls the distribution of tuffaceous sandstone and lapilli tuff and shows a complex fracture system around it. In this study, we examined the spatial variation in the geometry and connectivity of the fracture system by using circular sampling and topological analysis based on a detailed fracture trace map. As a result, both intensity and connectivity of the fracture system are higher in tuffaceous sandstone than in lapilli tuff. Furthermore, the degree of the orientation dispersion, intensity, and average length of fracture sets vary depending on the along-strike variation in structural position in the tuffaceous sandstone. Notably, curved fractures abutting the fault at a high angle occur at a fault bend. Based on the detailed observation and analyses of the fracture system, we conclude as follows: (1) the high intensity of the fracture system in the tuffaceous sandstone is caused by the higher content of brittle minerals such as quartz and feldspar. (2) the connectivity of the fracture system gets higher with the increase in the diversity and average length of the fracture sets. Finally, (3) the fault bend with geometric irregularity is interpreted to concentrate and disturb the local stress leading to the curved fractures abutting the fault at a high angle. This contribution will provide important insight into various geologic and structural factors that control the development of fracture systems around faults.

Retrospective clinical study of mandible fractures

  • Jung, Hai-Won;Lee, Baek-Soo;Kwon, Yong-Dae;Choi, Byung-Jun;Lee, Jung-Woo;Lee, Hyun-Woo;Moon, Chang-Sig;Ohe, Joo-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • Objectives: The purpose of this article is to analyze the incidence, demographic distribution, type, and etiology of mandible fractures that were treated by the Department of Oral and Maxillofacial Surgery in Kyung Hee University Dental Hospital from January 2002 to December 2012. Materials and Methods: This was a descriptive and analytic retrospective study that evaluated 735 patients that were treated for mandible fracture. Results: This study included 1,172 fractures in 735 patients. The ratio of male to female patients was 5.45 : 1; the maximum value was in patients between 20 and 29 years (38.1%) and the minimum in patients over 70 years old. The monthly distribution of facial fractures peaked in the fall and was lower during winter. No specific correlation was identified based on the annual fracture distribution. Among the 735 fracture patients, 1.59 fracture lines were observed per patient. The most frequent site was the symphysis, which accounted for a total of 431 fractures, followed by the angle (348), condyle (279), and body (95). The symphysis with angle was the most common site identified in combination with fracture and accounted for 22.4%, followed by symphysis with condyle (19.8%). The angle was the most frequent site of single fractures (20.8%). The major cause of injury was accidental trauma (43.4%), which was followed by other causes such as violence (33.9%), sports-related accidents (10.5%), and traffic accidents (10.1%). Fracture incidents correlated with alcohol consumption were reported between 10.0%-26.9% annually. Conclusion: Although mandible fracture pattern is similar to the previous researches, there is some changes in the etiologic factors.

Design of Hexagonal Fitting Nut Preform Considering Ductile Fracture (연성파괴를 고려한 6각 피팅너트 예비성형체 설계)

  • Park T. J.;Kim D. J.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.197-200
    • /
    • 2001
  • In the multi-stage former, manufacture of hexagonal fitting nut was generated in a defective products about $70{\~}80\%$. Defective products reduced in a product stiffness and increased a product cost. Defects for manufacturing hexagonal fitting nut caused in a increase of ductile fracture value. So in the study, a preform designed to reduce ductile fracture value and designed preform verified through the finite element simulation. In conclusion, Ductile fracture value reduced if A round dimension of preform reduced and a part of opposition angle contributed in Plenty a volume.

  • PDF

Effects of Specimen Size in Evaluation of Elastic-Plastic Fracture Toughness by Ultrasonic Method (초음파법을 이용한 탄소성 파괴인성치 평가에 있어서 시험편 크기의 영향)

  • 강동명;함경춘;우창기
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.19-24
    • /
    • 1998
  • Elastic-plastic fracture toughness($J_{IC}$) by ultrasonic method is evaluated in terms of width and thickness. Widths of specimen in 6061-T6 aluminum alloy are 50mm and 100mm, thicknesses of those are 20mm and 25mm, respectively. Elastic-plastic fracture toughness by ultrasonic method is independent of specimen thickness and side groove. Angle beam probe which are placed on the end of the compact specimen detect the maximum crack extension effectively. Comparing with elastic-plastic fracture toughness by ultrasonic method and that of unloading compliance method, $J_{IC}$ of ultrasonic method are underestimated to that of unloading compliance method. Elastic-plastic fracture toughness of width 100mm specimen are underestimated to that of width 50mm specimen about 20%.

  • PDF

Evaluation of Static Strength Applying to Fracture Mechanics on Ceramic/Metal bonded Joint (세라믹/금속 접합재에 대한 정적강도의 파괴역학적 평가)

  • 김기성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.53-62
    • /
    • 1996
  • Recently, ceramic / metal bonded joints have led to inccreasing use of structural materials such as automobile, heat engine in various industries. In this paper, a method to analyze an interface crack under both residual stresses and applied loading was proposed. and some results of boundary element method(BEM) analysis Were presented, Fracture thoughness tests of ceramic/metals bonded joints with an interface crack Were carried out, and the stress intensity factors of these joints Ware analyzed by BEM. Also crack propagtion direction was simulated numerically by using BEM. Crack propagation angle was able to easily determine based on the maximum stress concept. The prediction of fracture strength by the fracture thoughness of the ceramics/metals bonded joints was proposed.

  • PDF