• Title/Summary/Keyword: Angle Changes

Search Result 1,683, Processing Time 0.043 seconds

Characteristics of Astronomical Tide and Sea Level Fluctuations in Kiribati and Neighboring Countries (키리바시와 주변국 천문조위 특성 및 해수면 변동)

  • Kim, Yangoh;Kim, Jongkyu;Kim, Hyeon-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.746-752
    • /
    • 2022
  • Kiribati, a South Pacific island, and its surrounding countries are gradually submerging to rising sea levels. The sea level continues to change according to the degree of thermal expansion of glaciers and seawater that decreases with increase in temperature. Global warming affects both the amount and volume of seawater, thus increasing sea level. Tidal phenomena occur twice a day to the attraction of celestial bodies such as the moon and the sun. The moon changes the angle of orbiting surface with the Earth equator every 18.6 years, and the magnitude of the tidal force changes depending on the distance between the Earth equator and the moon orbital surface. The University of Hawaii Sea Level Center selected Tarawa, Christmas, Kanton of Kiribati,, Lautoka, Suva of Fiji,Funafuti of Tuvalu, Nuk1u'alofa of Tonga, and Port Vila of Vanuatu. When comparing tide levels for each year for 19 years, the focus was on checking the change in sleep to Tide levels, and rising sea levels was the effect of Tide levels. The highest astronomical tides (HAT) and lowest astronomical tides (LAT) were identified as Tarawa 297.0, 50.8 cm, Christmas 123.8, 19.9 cm, Kanton 173.7, 39.9 cm, Lautoka 240.7, 11.3 cm, Funafuti 328.6, 98.4 cm, Nuk1u'alofa 188.8, 15.5 cm, Port Vila 161.5, -0.5cm, respectively. The Sea level rising speed was Tarawa 3.1 mm/year, Christmas -1.0 mm/year, Kanton 1.6 mm/year, Lautoka 3.1 mm/year, Suva 7.4 mm/year, Funafuti 1.4 mm/year, Nuk1u'alofa 4.2 mm/year, and Port Vila -1.2 mm/year, respectively

Analysis of dose reduction of surrounding patients in Portable X-ray (Portable X-ray 검사 시 주변 환자 피폭선량 감소 방안 연구)

  • Choe, Deayeon;Ko, Seongjin;Kang, Sesik;Kim, Changsoo;Kim, Junghoon;Kim, Donghyun;Choe, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • Nowadays, the medical system towards patients changes into the medical services. As the human rights are improved and the capitalism is enlarged, the rights and needs of patients are gradually increasing. Also, based on this change, several systems in hospitals are revised according to the convenience and needs of patients. Thus, the cases of mobile portable among examinations are getting augmented. Because the number of mobile portable examinations in patient's room, intensive care unit, operating room and recovery room increases, neighboring patients are unnecessarily exposed to radiation so that the examination is legally regulated. Hospitals have to specify that "In case that the examination is taken out of the operating room, emergency room or intensive care units, the portable medical X-ray protective blocks should be set" in accordance with the standards of radiation protective facility in diagnostic radiological system. Some keep this regulation well, but mostly they do not keep. In this study, we shielded around the Collimator where the radiation is detected and then checked the change of dose regarding that of angles in portable tube and collimator before and after shielding. Moreover, we tried to figure out the effects of shielding on dose according to the distance change between patients' beds. As a result, the neighboring areas around the collimator are affected by the shielding. After shielding, the radiation is blocked 20% more than doing nothing. When doing the portable examination, the exposure doses are increased $0^{\circ}C$, $90^{\circ}C$ and $45^{\circ}C$ in order. At the time when the angle is set, the change of doses around the collimator decline after shielding. In addition, the exposure doses related to the distance of beds are less at 1m than 0.5m. In consideration of the shielding effects, putting the beds as far as possible is the best way to block the radiation, which is close to 100%. Next thing is shielding the collimator and its effect is about 20%, and it is more or less 10% by controlling the angles. When taking the portable examination, it is better to keep the patients and guardians far enough away to reduce the exposure doses. However, in case that the bed is fixed and the patient cannot move, it is suggested to shield around the collimator. Furthermore, $90^{\circ}C$ of collimator and tube is recommended. If it is not possible, the examination should be taken at $0^{\circ}C$ and $45^{\circ}C$ is better to be disallowed. The radiation-related workers should be aware of above results, and apply them to themselves in practice. Also, it is recommended to carry out researches and try hard to figure out the ways of reducing the exposure doses and shielding the radiation effectively.

Depth Control and Sweeping Depth Stability of the Midwater Trawl (중층트롤의 깊이바꿈과 소해심도의 안정성)

  • 장지원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.1-18
    • /
    • 1973
  • For regulating the depth of midwater trawl nets towed at the optimum constant speed, the changes in the shape of warps caused by adding a weight on an arbitrary point of the warp of catenary shape is studied. The shape of a warp may be approximated by a catenary. The resultant inferences under this assumption were experimented. Accordingly feasibilities for the application of the result of this study to the midwater trawl nets were also discussed. A series of experiments for basic midwater trawl gear models in water tank and a couple of experiments of a commercial scale gears at sea which involve the properly designed depth control devices having a variable attitude horizontal wing were carried out. The results are summarized as follows: 1. According to the dimension analysis the depth y of a midwater trawl net is introduced by $$y=kLf(\frac{W_r}{R_r},\;\frac{W_o}{R_o},\;\frac{W_n}{R_n})$$) where k is a constant, L the warp length, f the function, and $W_r,\;W_o$ and $W_n$ the apparent weights of warp, otter board and the net, respectively, 2. When a boat is towing a body of apparent weight $W_n$ and its drag $D_n$ by means of a warp whose length L and apparent weight $W_r$ per unit length, the depth y of the body is given by the following equation, provided that the shape of a warp is a catenary and drag of the warp is neglected in comparison with the drag of the body: $$y=\frac{1}{W_r}\{\sqrt{{D_n^2}+{(W_n+W_rL)^2}}-\sqrt{{D_n^2+W_n}^2\}$$ 3. The changes ${\Delta}y$ of the depth of the midwater trawl net caused by changing the warp length or adding a weight ${\Delta}W_n$_n to the net, are given by the following equations: $${\Delta}y{\approx}\frac{W_n+W_{r}L}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}{\Delta}L$$ $${\Delta}y{\approx}\frac{1}{W_r}\{\frac{W_n+W_rL}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}-{\frac{W_n}{\sqrt{D_n^2+W_n^2}}\}{\Delta}W_n$$ 4. A change ${\Delta}y$ of the depth of the midwater trawl net by adding a weight $W_s$ to an arbitrary point of the warp takes an equation of the form $${\Delta}y=\frac{1}{W_r}\{(T_{ur}'-T_{ur})-T_u'-T_u)\}$$ Where $$T_{ur}^l=\sqrt{T_u^2+(W_s+W_{r}L)^2+2T_u(W_s+W_{r}L)sin{\theta}_u$$ $$T_{ur}=\sqrt{T_u^2+(W_{r}L)^2+2T_uW_{r}L\;sin{\theta}_u$$ $$T_{u}^l=\sqrt{T_u^2+W_s^2+2T_uW_{s}\;sin{\theta}_u$$ and $T_u$ represents the tension at the point on the warp, ${\theta}_u$ the angle between the direction of $T_u$ and horizontal axis, $T_u^2$ the tension at that point when a weights $W_s$ adds to the point where $T_u$ is acted on. 5. If otter boards were constructed lighter and adequate weights were added at their bottom to stabilize them, even they were the same shapes as those of bottom trawls, they were definitely applicable to the midwater trawl gears as the result of the experiments. 6. As the results of water tank tests the relationship between net height of H cm velocity of v m/sec, and that between hydrodynamic resistance of R kg and the velocity of a model net as shown in figure 6 are respectively given by $$H=8+\frac{10}{0.4+v}$$ $$R=3+9v^2$$ 7. It was found that the cross-wing type depth control devices were more stable in operation than that of the H-wing type as the results of the experiments at sea. 8. The hydrodynamic resistance of the net gear in midwater trawling is so large, and regarded as nearly the drag, that sweeping depth of the gear was very stable in spite of types of the depth control devices. 9. An area of the horizontal wing of the H-wing type depth control device was $1.2{\times}2.4m^2$. A midwater trawl net of 2 ton hydrodynamic resistance was connected to the devices and towed with the velocity of 2.3 kts. Under these conditions the depth change of about 20m of the trawl net was obtained by controlling an angle or attack of $30^{\circ}$.

  • PDF

Evaluation of the Fruit Quality Indices during Maturation and Ripening and the Influence of Short-term Temperature Management on Shelf-life during Simulated Exportation in 'Changjo' Pears (Pyrus pyrifolia Nakai) (배 신품종 '창조'의 성숙 중 품질 요인 변화 및 수송온도 환경에 따른 반응성)

  • Lee, Ug-Yong;Choi, Jin-Ho;Ahn, Young-Jik;Chun, Jong-Pil
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.378-385
    • /
    • 2017
  • In this study, we evaluated the changes of fruit quality indices during fruit development and ripening in Korean new pear cultivar 'Changjo', developed from a cross between 'Tama' and '81-1-27' ('Danbae' ${\times}$ 'Okusankichi') in 1995 and named in 2009, to determine appropriate harvest time and to enhance the market quality and broaden the cultivation area. The fruits of 'Changjo' pears harvested from 132 days after full bloom (DAFB) to 160 DAFB. Fruit growth and quality indices were monitored at 1 week interval by measuring fruit weight, length, diameter, firmness, and taste related quality indices. The calculated fruit fresh weight increased continuously with fruit development and reached to an average of 594g on Sep. 20 (160 DAFB). The ratio of length to diameter declines as fruit maturation progress, resulting in 0.898 for ripe fruit stage as a round oblate shape. Flesh firmness of 'Changjo' pears showed over 30N until 153 DAFB and then decreased abruptly with fruit ripening, reaching a final level of about 26.44N on 160 DAFB. Starch content of fruit sap was also decreased abruptly after 146 DAFB which decreased almost half of the fruits harvested at 139 DAFB. In parallel with the decrease of flesh firmness, ethanol insoluble solids (EIS) content decreased sharply with fruit ripens, only 50% of EIS was detected on the fruits harvested on 160 DAFB when compared to that of the fruits harvested on 139 DAFB (Aug. 30). The maximum value of soluble solids contents was observed in the fruits harvested on 153 DAFB, resulting in $14.2^{\circ}Brix$. The changes of skin color difference $a^*$ which means loss of green color occurred only after 139 DAFB, coincide with the decrease of SPAD value of the fruit skin. The sugars of the 80% ethanol soluble fraction consisted mainly of fructose, sorbitol, glucose and sucrose, also increased during maturation and ripening. Fructose and sucrose contents were larger than those of glucose and sorbitol in flesh tissues. These results were explained that stored starch is converted to soluble sugars during fruit maturation, mainly in fructose and sucrose increasing the sweetness of this cultivar. Total polyphenols were increased up to middle of fruit maturation (146 DAFB) and then decreased continuously until the end of fruit maturation. Consequently, our results suggested that the commercial harvest time of 'Changjo' pears should not be passed 153 DAFB and late harvest of this cultivar would not good for quality maintenance during shelf-life. As a result of the post-harvest low-temperature acclimation experiment during the short-term transportation period, fruits harvested at 146 DAFB tended to maintain higher firmness after 14 days of simulated marketing at $25^{\circ}C$ compared to fruits harvested at 153 DAFB regardless of temperature set. And, the slower the rate of decrease to the final transport temperature of $5^{\circ}C$, the higher the incidence of internal browning and ethylene production. Therefore, in order to suppress the physiological disorder and to maintain the fruit quality when exporting to Southeast Asia in the 'Chanjo' pears, it is desirable to lower the temperature of the fruits within a short time after harvest and to set the harvest time before 146 days after full bloom.

Structural Constraints on Gold-Silver-Bearing Quartz Mineralization in Strike-slip Fault System, Samkwang Mine, Korea (삼광광산에서의 주향이동단층에 의한 함금-은 석영맥에 대한 구조규제)

  • Lee, Hyun Koo;Yoo, Bong-Cheal;Hong, Dong Pyo;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.579-585
    • /
    • 1995
  • The Samkwang mine is Cretaceous gold-silver-bearing deposits located in the western part of the Ogcheon belt The ore deposits have been emplaced within granite gneiss of the Precambrian age. The Au-Ag deposits are hydrothermal-vein type, characterized by arsenic-, gold- and silver-bearing sulphides, in addition to the principal ore-forming sulphides arsenopyrite, galena, sphalerite, chalcopyrite, pyrite and pyrrhotite. Their proven reserves are 355,000 MT, and grades are 8.4 g Au/t and 13.6 g Ag/t. On the basis of their structural characters, the Au-Ag-bearing quartz veins are classified into three types of ore veins; (1) The Main vein shows $N40^{\circ}-80^{\circ}E$ strike and $55^{\circ}-90^{\circ}SE$ dip, (2) the Sangban vein shows E-W strike and $30^{\circ}-40^{\circ}S$ dip, and (3) the Gukseong vein has $N25^{\circ}-40^{\circ}W$strike and $65^{\circ}-80^{\circ}SW$ dip. The emplacements of the ore veins are closely related to the minimum stress axis $({\sigma}_3)$ during the strike-slip movement of the study area. The ore-bearing veins filled with extension fractures during strike-slip movements were sequentially emplaced as follows: I) When ${\sigma}_1$ operates obliquely to NE-series discontinous surface, the Main fault zone $(F_1)$ developes. 2) During the same time, extension fractures ($T_1$ Gukseong veins) take place. 3) When the fault progress continuously, the existing $T_1$, may be high angle and $T_2$ (Daehung vein) developes continuously. 4) When ${\sigma}_1$ changes to sinistral sense, $T_3$ (basic dyke) occurs. 5) When a reverse fault becomes active, the Sangban vein is branched from the Guksabong vein.

  • PDF

Reconsideration of Acer pictum complex in Korea (한국산(韓國産) 고로쇠분류군(分類群)에 대한 재고(再考))

  • Chang, Chin-Sung
    • Korean Journal of Plant Taxonomy
    • /
    • v.31 no.3
    • /
    • pp.283-309
    • /
    • 2001
  • Acer pictum complex (A. pictum Thunb. ex Murray with varieties, A. okamotoanum Nakai, A. truncatum Bunge) in eastern Asia causes frequent difficulty in identification. One hundred twenty five specimens from A. pictum complex of China, Korea and Japan and A. cappadocicum var. sinicum of China were compared to investigate patterns of intra- and interspecific variation and to evaluate a recognition of several species as well as many varieties using 22 characters for morphometric analysis. The first three PCA accounted for 59% of the total variance. No strong discontinuities existed among taxa with respect to fruit and leaf characters. Much overlap among all taxa occurred the central region of the scatter diagram. Many characters appeared to show some clinal variation with changes from east of China to Japan through Korea. This was true not only when all species as considered as a single taxon, but when characters of individual taxa were compared with geography. As one considers a path from the western part of the ranges to areas to the east, the leaves become larger in most respects and become increasingly many lobed (five to seven or nine). In general, there was a tendency toward larger nutlet with smaller wing in the area toward northeast of China (=A. truncatum), while in the east of ranges (Island Ullung-do), plants were larger with respect to characters of fruit and leaves (=A. okamotoanum). The morphological differentiation between A. okamotoanum and Japanese and Korean individuals of A. pictum was not considered sufficient to warrant recognition of either specific or varietal status and should be treated as con specific under A. pictum var. mono. Since the lectotype of Acer pictum had minute hairs uniformly on the under surface of leaves(A. pictum var. pictum), the glabrous type of A. pictum was called A. pictum var. mono as Ohahsi suggested. The univaraite analysis (the mean and maximum/minium of nutlet size and wing/nutlet length ratio) indicated geographical differentiation of northeastern populations, A. truncatum, was distinctive, but Korean individuals of A. truncatum showed an affinity between Chinese individuals of A. truncatum and Korean individuals of A. Pictum var. mono. The current results, together with qualitative character, trunk features, justify subspecific status for this taxon. The previous varieties of A. mono in Korea were indistinguishable from typical form of A. Pictum var. mono on the basis of the wing angle and nutlet size, rejecting continued recognition of these taxa as distinctive varieties. Therefore, it is recommended that only one polymorphic species of A. pictum be recognized in addition to three varieties.

  • PDF

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

Effect of a Floating Photovoltaic System (FPV) at Chungju Dam (Cheongpung Lake) on Water Quality (충주댐(청풍호) 수상태양광 시설이 호수 수질에 미치는 영향)

  • Kim, Hak Jun;Kwak, Suhknam;Yoon, Min;Kim, Il-Kyu;Kim, Young-Sung;Kim, Dong-sub
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.293-305
    • /
    • 2019
  • In this study we investigated the effect of a floating photovoltaic (FPV) system in Cheongpung Lake on water quality. The FPV with a tilt angle of 33° covered ca. 0.04% of surface area (97 ㎢) of Chungju Lake. The water qualities of the whole lake before and after installation of FPV were first compared. DO, BOD, TOC, and Chl-a of the whole lake were increased, while conductivity decreased after installation period at the significance level of 0.05. This change was probably due to the increased influx of nutrients by 40% resulting from increased precipitation during the same period. We also measured water quality parameters on May and Nov. 2017 at the FPV center (FPVC) and nearby control sites, and compared water quality. The result showed that the FPVC and nearby sites were not significantly different (p>0.05), demonstrating that the FPV does not cause a decline of water quality. The water temperature, light intensity, and phytoplankton community were also measured. The water temperature was not different between the sites, while the light intensity decreased to 27~50%. Despite reduced light intensity at FPVC, the phytoplankton standing crops and the number of species were not significantly different (p>0.05). However, in the early November samples, standing crops was significantly higher in FPVC than control with periphytic diatoms belonging to Aulacoseira genus being dominant. This may be due to the temporal water body behavior or local retention of current by FPV system. This study may provide a measure of future installation of a FPV system.

Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications (한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의)

  • Son, Moon;Kim, Jong-Sun;Chong, Hye-Yoon;Lee, Yung-Hee;Kim, In-Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The southeastern Korean Peninsula has experienced crustal multi-deformations according to changes of global tectonic setting during the Cenozoic. Characteristic features of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50${\sim}$43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm. (2) Opening of the East Sea (25${\sim}$16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. In those times, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting contemporaneously, and the basins often experienced a kind of propagating rifting from NE toward SE. At about 17Ma, the Yonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (about 15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Island. The event caused the NW-SE compression in the Korea Strait as a tectonic inversion, which resultantly tenninated the basin extension and caused local counterclockwise rotation of blocks in southeastern Korea. (4) E-W compression in the East Asia (after about 5 Ma): Decreasing subduction angle of the Pacific plate and eastward movement of the Amurian plate have constructed the-top-to-west thrusts and become a major cause for earthquakes in southeastern Korea until the present time.

  • PDF

Evaluation of accuracy in the ExacTrac 6D image induced radiotherapy using CBCT (CBCT을 이용한 ExacTrac 6D 영상유도방사선치료법의 정확도 평가)

  • Park, Ho Chun;Kim, Hyo Jung;Kim, Jong Deok;Ji, Dong Hwa;Song, Ju Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.109-121
    • /
    • 2016
  • To verify the accuracy of the image guided radiotherapy using ExacTrac 6D couch, the error values in six directions are randomly assigned and corrected and then the corrected values were compared with CBCT image to check the accurateness of ExacTrac. The therapy coordination values in the Rando head Phantom were moved in the directions of X, Y and Z as the translation group and they were moved in the directions of pitch, roll and yaw as the rotation group. The corrected values were moved in 6 directions with the combined and mutual reactions. The Z corrected value ranges from 1mm to 23mm. In the analysis of errors between CBCT image of the phantom which is corrected with therapy coordinate and 3D/3D matching error value, the rotation group showed higher error value than the translation group. In the distribution of dose for the error value of the therapy coordinate corrected with CBCT, the restricted value of dosage for the normal organs in two groups meet the prescription dose. In terms of PHI and PCI values which are the dose homogeneity of the cancerous tissue, the rotation group showed a little higher in the low dose distribution range. This study is designed to verify the accuracy of ExacTrac 6D couch using CBCT. It showed that in terms of the error value in the simple movement, it showed the comparatively accurate correction capability but in the movement when the angle is put in the couch, it showed the inaccurate correction values. So, if the body of the patient is likely to have a lot of changes in the direction of rotation or there is a lot of errors in the pitch, roll and yaw in ExacTrac correction, it is better to conduct the CBCT guided image to correct the therapy coordinate in order to minimize any side effects.

  • PDF