• Title/Summary/Keyword: Angiotensin I-converting enzyme inhibitory peptides

Search Result 29, Processing Time 0.035 seconds

Production of Angiotensin I Converting Enzyme Inhibitory Peptides from Bovine Blood Plasma Proteins (도축 폐혈액 단백질로부터의 Angiotensin I Converting Enzyme 저해 펩타이드의 생산)

  • Hyeon, Chang-Gi;Sin, Hyeon-Gil
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.600-605
    • /
    • 1999
  • For the production of angiotensin I converting enzyme inhibitory peptides as a material for antihypertensive functional foods from animal blood produced in slaughterhouse, the optimum condition for enzymatic hydrolysis to yield a peptide fraction of the highest activity were investigated with a respect of industrial production. Among several industrially-usable enzymes tested, $Alcalase^?$ produced hydrolysates of the highest activity from total plasma and purified albumin. $IC_50$ values of albumin hydrolysate and its third fraction separated by gel chromatography were 0.5 and 0.02 mg/mL, respectively. The fraction was found to be obtained by a simple ultrafiltration using a membrane of MW cutoff 1,000. The possibility for the industrial production of antihypertensive peptides from animal blood plasma protein was suggested.

  • PDF

Digestion Pattern of Antihypertensive Angiotensin I-Converting Enzyme Inhibitory Peptides from Saccharomyces cerevisiae in a Successive Simulated Gastricintestinal Bioreactor

  • Jang, Jeong-Hoon;Jeong, Seung-Chan;Lee, Jung-Kee;Lee, Jong-Soo
    • Mycobiology
    • /
    • v.39 no.1
    • /
    • pp.67-69
    • /
    • 2011
  • A cell-free extract of Saccharomyces cerevisiae containing the angiotensin I-converting enzyme (ACE) inhibitory peptide was treated in a successive simulated gastric-intestinal bioreactor (step 1: amylase digestion, step 2: gastric fluid digestion, step 3: intestinal fluid digestion) to illustrate the absorption pattern of antihypertensive ACE inhibitory peptide, and the ACE inhibitory activities of each step were determined. Total ACE inhibitory activities of step 1, step 2, and step 3 were 55.96%, 80.09%, and 76.77%, respectively. The peptide sequence of each steps was analyzed by MS/MS spectrophotometry. Eleven kinds of representative peptide sequences were conserved in each step, and representative new peptides including RLPTESVPEPK were identified in step 3.

The Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Rainbow Trout Muscle Hydrolysate

  • Kim, Sung-Rae;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.183-190
    • /
    • 2012
  • The purpose of this study was the purification and characterization of an angiotensin I converting enzyme (ACE) inhibitory peptide purified from enzymatic hydrolysates of rainbow trout Oncorhynchus mykiss muscle. After removal of lipid, the approximate composition analysis of the rainbow trout revealed 24.4%, 1.7%, and 68.3% for protein, lipid, and moisture, respectively. Among six hydrolysates, the peptic hydrolysate exhibited the highest ACE inhibitory activity. We attempted to purify ACE inhibitory peptides from peptic hydrolysate using high performance liquid chromatography on an ODS column. The $IC_{50}$ value of purified ACE inhibitory peptide was $63.9{\mu}M$. The amino acid sequence of the peptide was identified as Lys-Val-Asn-Gly-Pro-Ala-Met-Ser-Pro-Asn-Ala-Asn, with a molecular weight of 1,220 Da, and the Lineweaver-Burk plots suggested that they act as a competitive inhibitor against ACE. Our study suggested that novel ACE inhibitory peptides purified from rainbow trout muscle protein may be beneficial as anti-hypertension compounds in functional foods.

Isolation and identification of angiotensin I-converting enzyme inhibitory peptides derived from thermolysin-injected beef M. longissimus

  • Choe, Juhui;Seol, Kuk-Hwan;Kim, Hyun-Jin;Hwang, Jin-Taek;Lee, Mooha;Jo, Cheorun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.430-436
    • /
    • 2019
  • Objective: This study identified angiotensin I-converting enzyme (ACE) inhibitory peptides in beef M. longissimus injected with thermolysin (80 ppm) and stored for 3 days at $5^{\circ}C$. Methods: Crude peptides (molecular weight <3 kDa) were obtained from the thermolysin hydrolysate and separated into seven fractions. Fraction V showing the highest ACE inhibitory activity was further fractionated, yielding subfractions V-15, V-m1, and V-m2, and selected for superior ACE inhibitory activity. Finally, twelve peptides were identified from the three peak fractions and the ACE inhibitory activity ($IC_{50}$) of each peptide was evaluated. Results: The Leu-Ser-Trp, Phe-Gly-Tyr, and Tyr-Arg-Gln peptides exhibited the strongest ACE inhibitory activity ($IC_{50}$ values of 0.89, 2.69, and 3.09 mM, respectively) and had higher concentrations (6.63, 10.60, and 29.91 pg/g; p<0.05) relative to the other peptides tested. Conclusion: These results suggest that the thermolysin injection process is beneficial to the generation of bioactive peptides with strong ACE inhibitory activity.

Production of Angiotensin-I Converting Enzyme Inhibitory Hydrolysates from Egg Albumen

  • Kim, H.S.;Ham, J.S.;Jeong, S.G.;Yoo, Y.M.;Chae, H.S.;Ahn, C.N.;Lee, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1369-1373
    • /
    • 2003
  • ACE (Angiotensin-I converting enzyme) inhibitory peptides derived from foods are thought to suppress high blood pressure by inhibiting ACE. We tried to make efficient production of the ACE inhibitory hydrolysate from egg albumen. A hydrolysate digested by neutrase presented the highest ACE inhibitory activity ($IC_50\;value=256.35{\mu}g/ml$) and the proper proteolysis was occurred by 1.0% enzyme addition and 4 h incubation at $47^{\circ}C$. Antihypertensive effect of neutrase hydrolysate was investigated in spontaneously hypertensive rats (SHR, n=5). Systolic blood pressure (SBP) was decrease by 6.88% (-14.14 mmHg, p<0.05) at 3 h after oral administration of 300 mg/kg body weight, and by 13.33% (-27.72 mmHg, p<0.05) by emulsified hydrolysate. These results showed that it is very effective to utilize egg albumen as a protein source for the production of ACE inhibitory peptides. However, further studies are required to investigate the methods to increase recovery yield and the isolation of active peptide is necessary for determining its sequence responsible for ACE inhibitory activity.

Purification and Characterization of Angiotensin I Converting Enzyme lnhibitory Peptides from Enzymatic Hydrolysate of Cod Liver Protein (대구의 간 단백질의 효소적 가수분해물로부터 안지오텐신 I 전환효소 저해 펩타이드의 분리.정제 및 특성)

  • 최영일;박표잠;최정호;변희국;정인철;문성훈;김세권
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.140-149
    • /
    • 2000
  • In order to utilize marine processing waste which would normally be discarded, cod liver protein was hydrolysed by ${\alpha}$-chymotrysin, and the hydrolysate was investigated for the new angiotensin I converting enzyme (ACE) inhibitor. Thy hydrolysate was separated into three major types, with molecular weight cut-off (MWCO) values less than 10 kDa, 5 kDa and 1 kDa of ultrafiltration membranes, respectively. ACE inhibitory peptides were isolated from the fractions passed through MWCO 1 kDa membrane, and purified by using ion-exchange chromatography on a SP-Sephadex C-25 column, gel filtration on a Sephadex G-15 column, and HPLC on an ODS column. The purity was identified with capillary electrophoresis. The amino acid sequences of two peptides were Met-Ile-Pro-Pro-Tyr-Tyr (IC50=10.9 ${\mu}$M) and Gly-Leu-Arg-Asn-Gly-Ile (IC50=35.0 ${\mu}$M)

  • PDF

Peptide Inhibitors for Angiotensin I Converting Enzyme from Corn Gluten Digests. (옥수수 글루텐 효소 가수분해물의 Angiotensin I Converting Enzyme 활성 저해 펩타이드의 정제)

  • 오광석;이동건;홍정운;성하진
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • The angiotensin I converting enzyme (ACE) has an important role in the maintenance of blood pressure. The ACE inhibitory activities of foods have recently been studied. We tried to isolate ACE inhibitory peptides from the Flavourzyme (FZ), Pescalase (PE), and Thermolysine (TH) protease digests of corn gluten, which was restricted to the use the source of food for digestion problem. The FZ, PE, TH/PE protease hydrolyzed corn gluten and the inhibitory activities of the hydrolyzates for ACE were measured. Major fractions were isolated from the digests using ODS chromatography after treating with ethanol in step gradient. The ACE inhibitors were further purified by Bio-Gel P-2 column and reverse phase HPLC. Five inhibitory peptides were isolated. Their amino acids were sequenced as LPF ($IC_{50}$ = 40$\mu$M), GPP ($IC_{50}$ = 17.6$\mu$M), PNPY ($IC_{50}$ = 30.7$\mu$M), SPPPFYL ($IC_{50}$ = 63 $\mu$M), and SQPP ($IC_{50}$ = 17.2$\mu$M).

Characterization of New Antihypertensive Angiotensin I-Converting Enzyme Inhibitory Peptides from Korean Traditional Rice Wine

  • Kang, Min-Gu;Kim, Jae-Ho;Ahn, Byung-Hak;Lee, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.339-342
    • /
    • 2012
  • This study describes the characterization of a new angiotensin I-converting enzyme (ACE) inhibitory peptide from a Korean traditional rice wine. After purification of the ACE inhibitor peptides with ultrafiltration, Sephadex G-25 column chromatography, and successively $C_{18}$ and SCX solid-phase extraction, reverse-phase HPLC, and size exculsion chromatography, two types of the purified ACE inhibitors with $IC_{50}$ values of 0.34 mg/ml and 1.23 mg/ml were finally obtained. The two purified ACE inhibitors (F-1 and F-2) were found to have two kinds of novel oligopeptides, showing very little similarity to other ACE inhibitory peptide sequences. The amino acid sequences of the two purified oligopeptides were found to be Gln-Phe-Tyr-Ala-Val (F-1) and Ala-Gly-Pro-Val-Leu-Leu (F-2), and their molecular masses were estimated to be 468.7 Da (F-1) and 357.7 Da (F-2), respectively. They all showed a clear antihypertensive effect on spontaneously hypertensive rats at a dosage of 500 mg/kg.

Isolation of Angiotensin I-Converting Enzyme Inhibitory Peptide from Chungkookjang (청국장으로부터 Angiotensin I 전환효소 저해 Peptide의 분리)

  • Matsui Toshiro;Yoo Hyung Jae;Hwang Jae Sung;Lee Dong Seok;Kim Han Bok
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.355-358
    • /
    • 2004
  • Chunkookjang, Korean traditional fermented soybean food emerges as a functional food to improve intestinal function and blood circulation. During Chungkookjang fermentation, microorganisms, enzymes, and diverse bioactive compounds increase sharply. Chungkookjang contains diverse oligo-peptides. Formation of peptides was confirmed by SDS-PAGE. Solube fermented soybean in our sample contained Tyr, Gln-Lys, Trp, Gln, and Lys-Pro as major components. Lys-Pro (0.083 mg/100 g sample) was purified by HPLC analysis. Angiotensin I­converting enzyme (ACE) causes hypertension by converting angiotensin I to angiotension II. ACE inhibitory activity of Lys-Pro was determined to be $IC_{50}=32.1\;{\mu}M.$ Whether or not eating Chungkookjang can lower blood pressure was also determined. Sistolic blood pressure dropped by 15 mmHg, and diastolic blood pressure by 8 mmHg 2 hr after a single administration of 20 g of fermented soybean. Chungkookjang might be helpful in improving blood circulation since it has ACE inhibitor and antihypertenisve effect.

Angiotensin-I-Converting Enzyme Inhibitory Peptides in Goat Milk Fermented by Lactic Acid Bacteria Isolated from Fermented Food and Breast Milk

  • Rubak, Yuliana Tandi;Nuraida, Lilis;Iswantini, Dyah;Prangdimurti, Endang
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.46-60
    • /
    • 2022
  • In this study, angiotensin-I-converting enzyme inhibitory (ACEI) activity was evaluated in fermented goat milk fermented by lactic acid bacteria (LAB) from fermented foods and breast milk. Furthermore, the potential for ACEI peptides was identified in fermented goat milk with the highest ACEI activity. The proteolytic specificity of LAB was also evaluated. The 2% isolate was inoculated into reconstituted goat milk (11%, w/v), then incubated at 37℃ until pH 4.6 was reached. The supernatant produced by centrifugation was analyzed for ACEI activity and total peptide. Viable cell counts of LAB and titratable acidity were also evaluated after fermentation. Peptide identification was carried out using nano liquid chromatography mass spectrometry (LC-MS/MS), and potential as an ACEI peptide was carried out based on a literature review. The result revealed that ACEI activity was produced in all samples (20.44%-60.33%). Fermented goat milk of Lc. lactis ssp. lactis BD17 produced the highest ACEI activity (60.33%; IC50 0.297±0.10 mg/mL) after 48 h incubation, viable cell counts >8 Log CFU/mL, and peptide content of 4.037±0.27/mL. A total of 261 peptides were released, predominantly derived from casein (93%). The proteolytic specificity of Lc. lactis ssp. lactis BD17 through cleavage on the amino acid tyrosine, leucine, glutamic acid, and proline. A total of 21 peptides were identified as ACEI peptides. This study showed that one of the isolates from fermented food, namely Lc. lactis ssp. lactis BD17, has the potential as a starter culture for the production of fermented goat milk which has functional properties as a source of antihypertensive peptides.