• 제목/요약/키워드: Angiostatin

검색결과 12건 처리시간 0.024초

Identification and Characterization of a Novel Angiostatin-binding Protein by the Display Cloning Method

  • Kang, Ha-Tan;Bang, Won-Ki;Yu, Yeon-Gyu
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.159-166
    • /
    • 2004
  • Angiostatin is a potent anti-angiogenic protein. To examine the angiostatin-interacting proteins, we used the display-cloning method with a T7 phage library presenting human cDNAs. The specific T7 phage clone that bound to the immobilized angiostatin was isolated, and a novel gene encoding the displayed polypeptide on the isolated T7 phage was identified. The displayed angiostatin-binding sequence was expressed in E. coli as a soluble protein and purified to homogeneity. This novel angiostatin-binding region interacted specifically to angiostatin with a dissociation constant of $3.4{\times}10^{-7}\;M$. A sequence analysis showed that the identified sequence was a part of the large ORF of 1,998 amino acids, whose function has not yet been characterized. A Northern analysis indicated that the gene containing the angiostatin-binding sequence was expressed differentially in the developmental stages or cell types.

Maltose Binding Protein 융합단백질에 의한 인간유래의 앤지오스타틴과 앤도스타틴의 대장균에서 수용성 단백질발현 (Soluble Expression of Human Angiostatin and Endostatin by Maltose Binding Protein (MBP) Fusion in E. coli)

  • 박선열;최신건
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.59-63
    • /
    • 2008
  • Rapid production of therapeutic proteins such as angiostatin and endostatin angiogenic inhibititors has been highly demanded for cancer treatment. In this regard, recombinant human angiostatin and endostatin were successfully expressed as soluble forms by maltose binding protein (MBP)-mediated fusion expression in Escherichia coli. PCR amplified, angiostatin and endostatin genes from human placenta cDNA library were inserted into an expression vector pMAL-c2e to construct prokaryotic expression vectors, pMAL-c2e/AS and pMAL-c2e/ES, respectively. Recombinant angiostatin and endostatin were efficiently expressed in E. coli origami (DE3) after IPTG induction and protein expression were confirmed by SDS-PAGE analyses. The expressed recombinant proteins were purified near homogenity using an amylose affinty column chromatography. In contrast that previous E. coli expressions were all insoluble, our results first time demonstrated that MBP fused human angiostatin and endostatin were soluble in E. coli.

  • PDF

The Orientation-Dependent Expression of Angiostatin-Endostatin Hybrid Proteins and Their Characterization for the Synergistic Effects of Antiangiogenesis

  • Paek, Sun-Yeol;Kim, Yong-Seok;Choi, Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권10호
    • /
    • pp.1430-1435
    • /
    • 2010
  • Two angiostatic fusion proteins (hAE and hEA), differing in tandem connection manners, were constructed from human angiostatin (hAS) and endostatin (hES) proteins. These fusion proteins were then evaluated for synergistic antiangiogenic properties. The 65 kDa secreted fusion proteins, expressed in Pichia pastoris, were verified by both mass analysis and Western blotting assay. Luciferase reorter gene assay, using a VEGF promoter, revealed that the angiostatin-endostatin fusion protein (hAE), and its corresponding fusion gene delivery on human microvascular endothelial cells (HMEC-1), resulted in a more potent synergistic antiangiogenic effect than the endostatin-angiostatin fusion protein (hEA). These results suggest that the orientation of the fusion genes in hAS and hES might be an important factor in the development of therapeutic proteins.

Primary Culture of Bovine Capillary Endothelial Cells for In Vitro Angiogenesis Assay

  • Lee, Tae-Hee;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제31권2호
    • /
    • pp.156-160
    • /
    • 1998
  • In this study, we cultured bovine capillary endothelial cells from adrenal cortex and compared these cells with capillary endothelial cells obtained from bovine adrenal medulla on morphological and cytokinetic properties. We demonstrated that bFGF and gelatin matrix were required for the growth of adrenal cortex-derived capillary endothelial cells over middle passage, but not for the growth of adrenal medulla-derived capillary endothelial cells. Also, we showed that the growth of adrenal cortex-derived capillary endothelial cells must be stimulated by bFGF and the gelatin matrix for the measurement of in vitro angiostatin activity. These data indicate that adrenal cortex-derived capillary endothelial cells over middle passage are more suitable than adrenal medulla-derived capillary endothelial cells for in vitro angiogenesis assay.

  • PDF

Antiangiogenic and Antitumor Activities of the Cryptic Fragments with Kringle Architecture

  • Joe, Young-Ae;Kim, Myung-Rae;Shim, Byoung-Shik;Oh, Dae-Shik;Hong, Sung-Hee;Hong, Yong-Kil
    • Biomolecules & Therapeutics
    • /
    • 제11권4호
    • /
    • pp.205-213
    • /
    • 2003
  • Various angiogenesis inhibitors target vascular endothelial cells and block tumor angiogenesis. Angiostatin is a specific endogenous angiogenesis inhibitor in clinical trials, which contains only the first four triple loop structures, known as kringle domains. Its generated by proteolytic cleavage of its parent molecule plasminogen, which itself does not exhibit antiangiogenic activity. Kringle domains from prothrombin, apolipoprotein, hepatocyte growth factor, urokinase and tissue-type plasminogen activator also elicit anti-angiogenic or antitumor activities in several model systems, albeit low amino acid sequence identity between angiostatin and each individual kringle. However, the differential effects of each kringle domain on endothelial cell proliferation, and migration observed in these kringle domains, suggest that the amino acid sequence of the primary structure is still important although kringle architecture is essential for anti-mlgiogenic activity. If it is further studied as to how amino acid sequence and kringle architecture contributes in anti-angiogenic activity, with studies on underlying mechanisms of anti-angiogenesis by kringle-based angiogenesis inhibitors, it will provide basis for the development of new potent anti-angiogenesis inhibitors and improvement of the efficacy of angiogenesis inhibitors.

Angiogenesis Inhibitor Derived from Angiostatin Active Sites

  • Park, Kyoung-Soo;Lim, Dong-Yeol;Park, Sang-Don;Kim, Min-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권9호
    • /
    • pp.1331-1335
    • /
    • 2004
  • Angiogenesis is essential for the growth and persistence of solid tumors. Their metastases, anti-angiogenesis could lead to the suppression of tumor growth. One of the main strategies of cancer treatment is developing molecules of anti-angiogenic activity. In this study, two angiogenic inhibitors, Ang3 (KLFDF) and Ang4 (XLFDF) derived from KLYDY, which is the sequence of angiostatin active sites kringle 5, were designed and synthesized. Previously we reported the activities and structures of two inhibitors, Ang1 (KLYDY) and Ang2 (KLWDF). In order to investigate the effect of Phe substitution, Ang3 was designed with a sequence of KLFDF. In order to reduce conformational flexibility of side chain in Lys, Ang4 was designed with a sequence of XLFDF, where X has amino substituted phenyl ring. Solution structures of those inhibitors were investigated using NMR spectroscopy and their activities as angiogenesis inhibitors were studied. Ang1 and Ang2 show angiogenic activities, while Ang3 and Ang4 have no activities and have extended structures compared to Ang1 and Ang2. Therefore, Phe rings do not have effective hydrophobic interactions with other aromatic residues in Ang3 and Ang4. The representative structure of Ang2 has a stable intramolecular hydrogen bond. Therefore, intramolecular hydrogen bonding might be more important in stabilizing the structure than the hydrophobic interactions in these inhibitors. More rigid structure, which can be expected to have higher activities and better match with the receptor bound conformations, can be obtained with a constrained cyclic structure. Further peptidomimetic approaches should be tried to develop angiogenesis inhibitors.

Plasminogen kringle 5 재조합 단백질에 의한 ERK1/2 활성화 및 세포골격 재배열 억제 (Inhibition of ERK1/2 Activation and Cytoskeleton Rearrangement by the Recombinant Protein of Plasminogen Kringle 5)

  • 하정민;김현경;김명래;조영애
    • 생명과학회지
    • /
    • 제16권7호
    • /
    • pp.1199-1206
    • /
    • 2006
  • Plasminogen kringle 5는 plasminogen kringles 1-4로 구성된 내생의 혈관 신생 억제제인 angiostatin과 같이 내피세포의 분열을 강력하게 억제한다고 알려져 있다. 본 연구에서는 plasminogen kringle 5의 재조합 단백질을 효모 발현 체계에서 생산하여 내피세포의 이동에 대한 저해 효과와 이에 대한 작용기전을 조사하였다 재조합 단백질 PK5는 plasminogen의 Thr456에서 Phe546까지 이르는 cDNA 부분을 ${\alpha}-factor$ prepro-peptide의 분비 신호 서열 뒤에 도입하여 Pichia pastoris GS115에서 발현시켰다. 메탄올 유도 후 얻은 배양액을 S-spin column을 이용하여 정제하였다. 정제된 단백질을 SDS-PACE하였을 때 약 10kDa의 단일 밴드를 나타냄을 확인할 수 있었다. 정제된 PK5는 bFGF나 VEGF에 의해 유도된 인간의 제대 유래 내피 세포의 이동을 약 500nM의 $IC_{50}$ 값으로 농도 의존적으로 감소시켰다. 내피 세포에 PK5 500M을 처리한 결과 bFGF에 의해 유도된 ERK1/2의 인산화를 감소시켰다 또한, PK5는 bFGF에 의해 유도된 내피세포의 골격 재형성을 강력하게 억제하는 것으로 관찰되었다. 따라서, 이러한 결과들은 효모 생산 PK5가 내피세포의 이동을 효과적으로 억제하며, 이는 ERK1/2의 활성과 세포골격의 재배열을 억제함으로써 나타나는 것으로 부분적으로 설명될 수 있다.

Secretory Production of Recombinant Urokinase Kringle Domain in Pichia pastoris

  • Kim, Hyun-Kyung;Hong, Yong-Kil;Park, Hyo-Eun;Hong, Sung-Hee;Joe, Young-Ae
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.591-597
    • /
    • 2003
  • Human urokinase kringle domain, sharing homology with angiostatin kringles, has been shown to be an inhibitor of angiogenesis, which can be used for the treatment of cancer, rheumatoid arthritis, psoriasis, and retinopathy. Here, the expression of the kringle domain of urokinase (UK1) as a secreted protein in high levels is reported. UK1 was expressed in the methylotrophic yeast Pichia pastoris GS115 by fusion of the cDNA spanning from Ser47 to Lys135 to the secretion signal sequence of ${\alpha}-factor$ prepro-peptide. In a flask culture, the secreted UK1 reached about 1 g/l level after 120h of methanol induction and was purified to homogeneity by ion-exchange chromatography. Amino-terminal sequencing of the purified UK1 revealed that it was cleaved at the Ste13 signal cleavage site. The molecular mass of UK1 was determined to be 10,297.01 Da. It was also confirmed that the purified UK1 inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor, or epidermal growth factor, in a dose-dependent manner. These results suggest that a P. pastoris sytem can be employed to obtain large amounts of soluble and active UK1.

In vitro Interaction of Recombinantly Expressed Kringle 5 (rK5) with Ras Guanine Nucleotide Dissociation Stimulator-like Factor (Rgl2)

  • Lee, Jung-Whoi;Kim, Sun-Hee;Park, Yong-Sung;Woo, Je-Wan;Lim, Dong-Yeol;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권12호
    • /
    • pp.1863-1868
    • /
    • 2004
  • Kringle 5 (K5), located outside of angiostain (K1-4) in human plasminogen, displays more potent antiangiogenic activity on endothelial cell proliferation than angiostatin itself. Using a yeast two-hybrid system in vivo, we have recently identified Rgl2 (guanine nucleotide dissociation stimulator (RalGDS)-like factor 2) as a binding protein of human K5. In order to confirm in vitro protein interaction between K5 and Rgl2, we developed bacterial recombinant expression systems for them. K5 and Rgl2 proteins were expressed in high yields and purified into pure forms with His tags and GST fusion, respectively. GST-pull down experiments clearly demonstrated that K5 interacts specifically with Rgl2 in vitro. These results indicate that Rgl2 functions as a receptor protein for K5 in vitro as well as in vivo, leading to anti-angiogenesis through regulating Ras signaling pathways.

Packed Bed Adsorption과 Expanded Bed Adsorption 크로마토그래피를 이용한 내포체 단백질의 고체상 재접힘 (Solid-Phase Refolding of Inclusion Body Protein in Packed Bed Adsorption and Expanded Bed Adsorption Chromatography)

  • 최원찬;김민영;서창우;이은규
    • KSBB Journal
    • /
    • 제18권6호
    • /
    • pp.500-505
    • /
    • 2003
  • 재조합 대장균에서 내포체 형태로 발현시킨 LK68을 생물학적 활성을 가진 native한 단백질로 재생시키기 위해서 PBA 크로마토그래피와 EBA 크로마토그래피를 이용한 고체상 재접힘을 수행하였다. 내포체와 세포파쇄액을 시작물질로 하여 재접힘 공정을 수행하였으며 총 단백질 회수율과 재접힘 수율을 비교한 결과, EBA 공정이 기존의 액상 재접힘이나 PBA를 이용한 재접힘 공정에 비하여 우수함을 확인하였다. 또한 Iysine binding, RP-HPLC, SEC-HPLC, Ellman method 등을 사용하여 분석한 결과 재접힘된 LK68이 native LK68와 동등함을 확인하였다. 본 연구를 통해 EBA 크로마토그래피를 이용한 재접힘 방법은 재접힘 단계의 수율을 향상시킬 뿐 아니라 공정 단계, 시간 등을 감소시켜 공정 성능을 전체적으로 향상시킬 수 있음을 제시하였다.