• Title/Summary/Keyword: Andesitic Tuff

Search Result 47, Processing Time 0.029 seconds

Occurrence and Chemical Composition of Minerals from the Pallancata Ag Mine, Peru (페루 Pallancata 은 광산에서 산출되는 광물들의 산상 및 화학조성)

  • Yoo, Bong Chul;Acosta, Jorge
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.87-102
    • /
    • 2019
  • Pallancata Ag mine is located at the Ayacucho region 520 km southeast of Lima. The geology of mine area consists of mainly Cenozoic volcanic-intrusive rocks, which are composed of tuff, andesitic lava, andesitic tuff, pyroclastic flow, volcano clasts, rhyolite and quartz monzonite. This mine have about 100 quartz veins in tuff filling regional faults orienting NW, NE and EW directions. The Ag grades in quartz veins are from 40 to 1,000 g/t. Quartz veins vary from 0.1 m to 25 m in thickness and extend to about 3,000 m in strike length. Quartz veins show following textures including zonation, cavity, massive, breccia, crustiform, colloform and comb textures. Wallrock alteration features including silicification, sericitization, pyritization, chloritization and argillitization are obvious. The quartz veins contain calcite, chalcedony, adularia, fluorite, rutile, zircon, apatite, Fe oxide, REE mineral, Cr oxide, Al-Si-O mineral, pyrite, sphalerite, chalcopyrite, galena, electrum, proustite-pyrargyrite, pearceite-polybasite and acanthite. The temperature and sulfur fugacity ($f_{s2}$) of the Ag mineralization estimated from the mineral assemblages and mineral compositions are ranging from 118 to $222^{\circ}C$ and from $10^{-20.8}$ to $10^{-13.2}atm$, respectively. The relatively low temperature and sulfur-oxygen fugacities in the hydrothermal fluids during the Ag mineralization in Pallancata might be due to cooling and/or boiling of Ag-bearing fluids by mixing of meteoric water in the relatively shallow hydrothermal environment. The hydrothermal condition may be corresponding to an intermediate sulfidation epithermal mineralization.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula: (4) Kimhae Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구: (4) 김해납석광상)

  • Kim, Soo Jin;Choo, Chang Oh;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.122-144
    • /
    • 1993
  • The Kimhae napseok clay deposit was studied to characterize its mineralogy and genesis. Geology of the deposit is composed of Tertiary volcanic rocks and granodiorite. Tertiary volcanic rocks consist of andesitic tuff with minor interstratified tuffaceous shale, and rhyodacitic tuff. The main ore body of 2.4 to 4 m in thickness developed parallel to the bedding of andesitic tuff bed. Its strike and dip are $N70^{\circ}E-N85^{\circ}E$ and $16^{\circ}NW-32^{\circ}NW$, respectively. Two alteration zones; the propylitic zone of albite-epidote-chlorite-quartz assemblage and advanced argillic zone of pyrophyllite-dickite-alunite-diaspore assemblage are developed. Correlation of $SiO_2$ to $Al_2O_3$ shows no relation in propylitic zone, while a negative linear relation in advanced argillic zone. Chemical variation shows that $SiO_2$, $Al_2O_3$, MgO, CaO, $Na_2O$ and $K_2O$ were leached out during hydrothermal alteration. Pyrophyllite, the most abundant mineral in advanced argillic zone, occurs as low temperature 2M polytype. It is closely associated with dickite, diaspore and alunite. The Hinckley index of dickite is 0.83 showing moderate crystallinity. Na content is increasing in the M site with the increasing content of cations in the R-site. the mole percent of Na replacing K in alunite ranges from 53.2 to 71.6. It is also found that pyrophyllite grows in the dissolution site of diaspore. Plagioclase was albitized. Lowering of pH caused mainly by sulfide and sulfate decomposition resulted in preferential leaching of Si. It is inferred that aluminum released from plagioclase in the volcanic rocks as well as from the tuffaceous shale intercalated in andesitic tuff were the main sources of aluminum required for the formation of clay deposit. pH in hydrothermal fluid decreased from propylitic zone to advanced argillic zone with increasing degree of alteration. Based on experimental data reported in the literature and mineral assemblages, the formation temperature of the deposit ranges 270 to $320^{\circ}C$.

  • PDF

Geologic and Geochemical study on the rock sequences containing oily materials in Southwestern Coast Area of Korea (한국서남해안지역(韓國西南海岸地域)에 분포(分布)하는 함유질물층(含油質物層)에 대(對)한 지질학적(地質學的) 및 지구화학적연구(地球化學的硏究))

  • Lee, Dai Sung;Lee, Ha-Yong
    • Economic and Environmental Geology
    • /
    • v.9 no.1
    • /
    • pp.45-73
    • /
    • 1976
  • This study has been made for the enlargement of a previous work of 1964 which was carried out by an author of this work emphasizing the stratigraphy, micropaleontology, depositional environment, and structural tectonics of the studied area. The stratigraphic sequences of the area are groupped into four units: (1) basement of Pre-Cretaceous, (2) lower sediments of Late Cretaceous, (3) upper sediments of Late Cretaceous and (4) igneous rocks of Late Cretaceous and Tertiary (?). The oldest rocks consisting of schists and gneisses of Pre-Cambrian and schistose granite' of Jurassic age are exposed at the base of this area on which the thick Cretaceous sediments were deposited. These old rocks are unconformably overlain by the lower sedimens of Late Cretaceous composed of three members, an alternation of black shale and tuffaceous sediments, fine tuff and rhyollite flow in ascending order. The oily material was found from the black shales of the alternation m"ember as semi-solid greaselike material, oily order and microscopic granular spherical material and oily stain. The lower sediments are also overlain, in low-angleunconfromity, by the 'upper sediments having three members, an alternation of volcanic conglomerate and andesitic tuff, rhyollitic tuff and andesite flow in the same order. The igneous suit of diabase, diorites, biotite granite, porphyritic granite and porphyries of the latest Cretaceous and small exposure of pitchstone of Tertiary (?) intruded into the pre-existed rocks above mentioned. Considerable amount of ostra- coda microfossils have been chemically extracted from the black shales of the lower sediments and the identification of the fossils suggests that the depositional environment of the sediments were under fresh or brackish water condition. The distribution of the geology and its tectonic data also suggest a combination of dome and basin structures in the area of San-i peninsula and Jin-do as shown in fig. 8. Between these two units an anticlinal structure was constructed. As a result of this study, a seismic survey in a district between U-su-yong and north coast of Jin-do is recommended to determine the underground features.

  • PDF

Collapse Type and Processes of the Geumosan Caldera in the Southern Gumi, Korea (구미 남부 금오산 칼데라의 함몰 유형과 과정)

  • Hwang, Sang Koo;Son, Young Woo;Seo, Seung Hwan;Kee, Weon-Seo
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • The Gumi basin, situated in the mid-southeastern Yeongnam Massif, has the Cretaceous stratigraphy that is divided into Gumi Formation, andesitic rocks (Yeongamsan Tuff, Busangni Andesite), rhyolitic rocks (Obongni Tuff, Doseongul Rhyolite, Geumosan Tuff) and Intrusives (ring dikes, other dikes) in ascending order. The Geumosan Tuff is composed mostly of many ash-flow tuffs which are associated with Geumosan caldera along with the ring dikes. The caldera is outlined by ring faults and dikes and has about 3.5 × 5.6 km in diameters. The intracaldera volcanics show a downsag structure that is dipped inward in their flow and welding foliations. The caldera block represent an asymmetric subsidence, which drops 350 m in the northern margin and 600 m in the southern one. Based on these data, the Geumosan caldera is geometrically classified as an asymmetric piston subsidence caldera that suggests a single caldera cycle. The caldera reflects the piston subsidence of the caldera block bounded by the outward-dipping ring faults following a voluminous eruption of magma from the chamber. The downsag in the caldera block refers to the downsagging during the initial subsidence at the same time as the full development of the bound fault. In the ring fissures following the sagging, magma was injected due to the overpressure of magma chamber caused by subsidence.

Areal Distribution Ratios of Constituent Rocks with Geologic Ages and Rock Types by GIS in the Gyeongsangbug-Do and Daegu Areas (GIS에 의한 경북-대구지역 구성암류의 지질시대별 및 암종별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun;Kim, Ju-Yong;Yi, Sang-Heon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • On the ArcGIS 9.2 program in Gyeongsangbug-Do and Daegu areas, distribution ratios of rock types and geologic ages were obtained from the 1 : 250,000 scaled digital geologic and geomorphic maps. The obtained distribution ratios here will be used the geologic information data for industrialization and development planning of rock resources. The Gyeongsangbug-Do area consists of 86 rock types that can be divided into 10 large groups in geologic age. Their geologic distribution ratios show the decreasing in the order of Cretaceous, Precambrian, Jurassic, Quaternary, Age-unknown and Tertiary, all of which occupy the prevailing ratio of 96.30% in the area. Of which, sixteen rock types are somewhat dominant ones (64.04%). They are of Precambrian Yulri group and granite gneiss of the Yeongnam metamorphic complex and biotite gneiss of the Sobaegsan metamorphic complex, Age-unknown granite, Jurassic granite, Cretaceous Gasongdong and Dogyedong formations of the Yeongyang sub-basin, Nagdong and Chunsan formations and intermediate-basic volcanics of Euiseong sub-basin, Jinju and Jindong formations and andesite-andesitic tuff of Milyang sub-basin, and hornblende granite, and Quaternary alluvium. They show relatively narrow ranges of 2.07-6.53% in geologic distribution in exception of Jurassic granite showing 13.14%. And the rest 70 rock types appear to very narrow range between 0.01 and 1.94 %. On the other hand, twelve rock types are developed in the Daegu area. Their geologic ages appear to be classified into Cretaceous and Quaternary occupying 86.05% and 11.39%, respectively. Seven rock types take possession of 94.04% among the all rocks. The major rock types are Jinju formation of the Sindong group, Chilgog, Haman and Jindong formations of the Hayang group, andesite and andesitic tuff, hornblende granite and Quaternary alluvium. With exception of andesite and andesitic tuff of 37.40%, the types show slightly wide range of 3.25-17.39%, which apparently differ trends from that of Gyeongsangbug-Do area. And the rest of rock types have narrow ranges of 0.22-1.81% in the Daegu area.

Flow Direction and Source Area of the Ipbong Andesite in Western Yeongdeok, Korea (영덕 서부 입봉안산암의 유향과 공급지역)

  • Hwang, Sang-Koo;Ham, Hee-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.293-301
    • /
    • 2010
  • The Ipbong Andesite is a stratigraphic unit which is lain in the lowermost part of the Yucheon Group in the southeastern Yeongyang sbbasin. The Ipbong Andesite is lain on the Sinyangdong Formation and under the dacitic tuff, and consists in its lower andesitic tuffs and upper lavas. The andesitic lavas show some alignments of elongate vesicles filling with calcite amygdules and plagioclase microphenocrysts, and show rare imbrication of the microphenocrysts in vertical sections parallel to them. The flow directions which is measured from the flow indicators are laid along NNW-SSE trend in the eastern part and NNESSW in the southwestern part of the study area. Movement pattern from the flow lineations suggests that the Ipbong Andesite had a fanlike pattern by flowing southwards from the mid-northern part. Accordingly a small diorite stock in the mid-northern part area may probably be a source area of the Ipbong Andesite.

Petrology of the Igneous Rocks in the Goseong Area, Gyeongsang Basin I. Major Element Geochemistry and K-Ar Radiometric Age (경상분지 고성지역의 화성암류에 대한 암석학적 연구 I. 주성분원소 지구화학과 K-Ar 방사성 연대)

  • Jwa, Yong-Joo;Park, Jeong-mi
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.561-573
    • /
    • 1996
  • The igneous rocks in the Goseong area, the southwestern part of the Gyeongsang basin, are composed of the volcanic rocks, Bulgugsa granites and intrusive andesites. The volcanic rocks are andesitic lapilli tuff, dacite and rhyolite. The granites are mainly of hornblende-biotite granite and intruded into the sedimentary basement and the volcanic rocks. The intrusion of andesitic dyke is thought to be the latest igneous activity in the area. In the variation diagrams of the major oxides, the three igneous rock types show different variational trends, indicating that they were from the different magmatic pulses. K-Ar radiometric ages suggest that the igneous activity in the Goseong area had occurred during late Cretaceous period. The ages of the volcanic rocks seem likely to have become younger due to the thermal effect by the granitic intrusion. The major element compositoinal variation of the granites from the Goseong area are compared with those from the Jindong, Geoje and Masan areas. By the comparison, it is easily understood that the Jindong granites are fairly different from the other three granites. On the other hand, the Goseong, Geoje and Masan granites generally show similar variational trends with each other, suggesting that they are of similar genetic origin. Combining the similarity of the geochemical features and the difference of the intruding ages between the Goseong and Masan granites, it seems like that the magma generation from the same source materials had occurred at a temporal interval.

  • PDF

Deformation Behaviour of Metamorphic Tuff from Plate Loading Test

  • Lee, Young-Nam;Suh, Young-Ho;Kim, Dae-Young
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.87-100
    • /
    • 1997
  • This paper presents the results of plate loading test and discontinuum analysis, carried out to study the deformation behaviour and determine the deformation modulus of !rletamorphic andesitic tuff found at the site of a underground oil storage facility in Korea. In the plate loading test, the maximum pressure of 14MPa was applied to the bedrock by using a flat jack(1m in diameter) and the rock anchor system for the reaction against the applied pressure. The values of deformation modulus obtained from this test were compared with those of laboratory test, biaxial test and pressuremeter test. The deformation modulus from plate loading test was generally about half of the intact rock modulus, and the mass modulus of the bedrock at the test site may be affected by discontinuities and ranges between 25 and 350pa. Discontinuum analysis was also performed to simulate plate loading test and study the influence of discontinuities on the deformability of rock mass by simulating the presence of joints at the test area.

  • PDF

A Case Study on the Collapsed Cut-Slope in $\bigcirc\bigcirc$ detour at JeonranamDo (전라남도 $\bigcirc\bigcirc$우회도로 붕괴절토사면 사례 연구)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jeong-Yeup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.966-973
    • /
    • 2008
  • In recent, the collapses of cut-slope is gradually increased due to the heavy rains accompanied by typhoon. Specially, many cut-slope failures and landslides was happened to Goheung, Yeosu, Suncheon region, Jeonranamdo in the middle of September 2007. The slope of investigation is width 20 m, height 22 m, and the circular failure was occurred. The parent rocks of the slope are pyroclastic rock, namely andesite, andesitic tuff et al. and the weathering grade is completely weathered to residual soils owing to rapid weathering process and has the existence of fault zone and mafic dyke. Also, lots of extension cracks are presented and the hydrologic condition is very deteriorated. As a result of the limit equilibrium analysis, the safety factor is 1.09(in dry season) and 0.64(in wet season). For the stabilization of the cut-slope, we decided to use the retaining wall, anchors and drainage apparatus.

  • PDF

Revised Fission-track Ages and Chronostratigraphies of the Miocene Basin-fill Volcanics and Basements, SE Korea (한국 동남부 마이오세 분지 화산암과 기반암의 피션트랙 연대 재검토와 연대층서 고찰)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.83-115
    • /
    • 2013
  • Erroneous fission-track (FT) ages caused by an inappropriate calibration in the initial stage of FT dating were redefined by re-experiments and zeta calibration using duplicate samples. Revised FT zircon ages newly define the formation ages of Yucheon Group rhyolitic-dacitic tuffs as Late Cretaceous to Early Paleocene ($78{\pm}4$ Ma to $65{\pm}2$ Ma) and Gokgangdong rhyolitic tuff as Early Eocene ($52.1{\pm}2.3$ Ma). In case of the Early Miocene volcanics, FT zircon ages from a dacitic tuff of the upper Hyodongri Volcanics ($21.6{\pm}1.4$ Ma) and a dacitic lava of the uppermost Beomgokri Volcanics ($21.3{\pm}2.0$ Ma) define chronostratigraphies of the upper Beomgokri Group, respectively in the southern Eoil Basin and in the Waeup Basin. A FT zircon age ($19.8{\pm}1.6$ Ma) from the Geumori dacitic tuff defines the time of later dacitic eruption in the Janggi Basin. Based on FT zircon ages for dacitic rocks and previous age data (mostly K-Ar whole-rock, partly Ar-Ar) for basaltic-andesitic rocks, reference ages are recommended as guides for stratigraphic correlations of the Miocene volcanics and basements in SE Korea. The times of accumulation of basin-fill sediments are also deduced from ages of related volcanics. Recommended reference ages are well matched to the whole stratigraphic sequences despite complicated basin structures and a relative short time-span. The Beomgokri Group evidently predates the Janggi Group in the Eoil-Waeup basins, while it is placed at an overlapped time-level along with the earlier Janggi Group in the Janggi Basin. Therefore, the two groups cannot be uniformly defined in a sequential order. The Janggi Group of the Janggi Basin can be evidently subdivided by ca. 20 Ma-basis into two parts, i.e., the earlier (23-20 Ma) andesitic-dacitic and later (20-18 Ma) basaltic strata.