• Title/Summary/Keyword: And temperature

Search Result 86,972, Processing Time 0.111 seconds

Biological characteristics of Phanuromyia ricaniae(Hemiptera: Platygastroidea), an egg parasitoid of Ricania sublimata (Hemiptera: Ricaniidae) (갈색날개매미충 알 기생봉인 날개매미충알벌(Phanuromyia ricaniae)의 생물 특성)

  • Jeon, Sung-Wook;Kim, Kwang-Ho;Lee, Gwan-Seok;Seo, Bo Yoon;Kim, Ji Eun;Kang, Wee Soo;Cho, Jum Rae
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.586-593
    • /
    • 2020
  • This study was conducted to investigate the biological characteristics of Phanuromyia ricaniae (Hemiptera: Platygastroidea), an egg parasitoid of Ricania sp. (Hemiptera: Ricaniidae) as a biological control agent to control Ricania sublimata. The developmental period of P. ricaniae was 3.8 days for eggs, 11.1 days for larvae, and 16.3 days for pupae at 25℃, and 3.4 days for eggs, 7.8 days for larvae, and 15.3 days for pupae at 30℃. Except for the larval stage, the developmental periods were not significantly different, but the egg-to-pupa period at 30℃ was significantly shorter than that at 25℃. P. ricaniae emerged at the photophase in 24 hours, but not at the scotophase. A higher emergence rate (34.5%) was seen from 10:00 to 12:00 after the lights were turned. The female-to-male ratio of P. ricaniae was 3:1. The longevity of P. ricaniae adults was 49.0 days for females and 44.0 days for males at 20℃, 27.6 days for females and 28.4 days for males at 25℃, and 18 days for females and 14.0 days for males at 30℃. Its longevity at a low temperature (20℃) was longer than that at higher temperatures (25 and 30℃). Adult females laid eggs during all days except from 00:00-02:00 (scotophase time). The ovipositional distribution rate was 26.1% from 20:00 to 22:00, which was the peak, and the next peak was 15.7% at 10:00 to 12:00. P. ricaniae showed arrhenotokous parthenogenesis in which unfertilized eggs develop into males. Therefore, the results suggest that P. ricaniae may be a biological control agent for R. sublimata.

Production of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) by Bacillus sp. EMK-5020 Using Makgeolli Lees Enzymatic Hydrolysate and Propionic Acid as Carbon Sources (막걸리 주박 가수분해 산물과 propionic acid를 탄소원으로 이용한 Bacillus sp. EML-5020 균주로부터 poly (3-hydroxybutyrate-co-3-hydroxyvalerate) 생합성)

  • Kwon, Kyungjin;Kim, Jong-Sik;Chung, Chung-Wook
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.510-522
    • /
    • 2022
  • In this study, to biosynthesize PHA with properties more similar to polypropylene, a Bacillus sp. EMK-5020 strain that biosynthesized poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was isolated from soil. Bacillus sp. EMK-5020 strain biosynthesized PHBV containing 1.3% 3-hydroxyvalerate (3HV) using reducing sugar contained in Makgeolli lees enzymatic hydrolysate (MLEH) as a single carbon source. As the amount of propionic acid, which was added as a second carbon source, increased, the content of 3HV also increased. PHBV containing up to 48.6% of 3HV was synthesized when 1.0 g/l of propionic acid was added. Based on these results, the strain was cultured for 72 hr in a 3 l fermenter using reducing sugar in MLEH (20 g/l) and propionic acid (1 g/l) as the main and secondary carbon sources, respectively. As a result, 6.4 g/l DCW and 50 wt% of PHBV (MLEH-PHBV) containing 8.9% 3HV were biosynthesized. Through gel permeation chromatography and thermogravimetric analysis, it was confirmed that the average molecular weight and the decomposition temperature of MLEH-PHBV were 152 kDa and 273℃, respectively. In conclusion, the Bacillus sp. EMK-5020 strain could biosynthesize PHBV containing various 3HV fractions when MLEH and propionic acid were used as carbon sources, and PHBV-MLEH containing 8.9% 3HV was confirmed to have higher thermal stability than standard PHBV (8% 3HV).

Development of a water quality prediction model for mineral springs in the metropolitan area using machine learning (머신러닝을 활용한 수도권 약수터 수질 예측 모델 개발)

  • Yeong-Woo Lim;Ji-Yeon Eom;Kee-Young Kwahk
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.307-325
    • /
    • 2023
  • Due to the prolonged COVID-19 pandemic, the frequency of people who are tired of living indoors visiting nearby mountains and national parks to relieve depression and lethargy has exploded. There is a place where thousands of people who came out of nature stop walking and breathe and rest, that is the mineral spring. Even in mountains or national parks, there are about 600 mineral springs that can be found occasionally in neighboring parks or trails in the metropolitan area. However, due to irregular and manual water quality tests, people drink mineral water without knowing the test results in real time. Therefore, in this study, we intend to develop a model that can predict the quality of the spring water in real time by exploring the factors affecting the quality of the spring water and collecting data scattered in various places. After limiting the regions to Seoul and Gyeonggi-do due to the limitations of data collection, we obtained data on water quality tests from 2015 to 2020 for about 300 mineral springs in 18 cities where data management is well performed. A total of 10 factors were finally selected after two rounds of review among various factors that are considered to affect the suitability of the mineral spring water quality. Using AutoML, an automated machine learning technology that has recently been attracting attention, we derived the top 5 models based on prediction performance among about 20 machine learning methods. Among them, the catboost model has the highest performance with a prediction classification accuracy of 75.26%. In addition, as a result of examining the absolute influence of the variables used in the analysis through the SHAP method on the prediction, the most important factor was whether or not a water quality test was judged nonconforming in the previous water quality test. It was confirmed that the temperature on the day of the inspection and the altitude of the mineral spring had an influence on whether the water quality was unsuitable.

Phytoplankton Variability in Response to Glacier Retreat in Marian Cove, King George Island, Antarctica in 2021-2022 Summer (하계 마리안 소만 빙하후퇴에 따른 식물플랑크톤 변동성 분석)

  • Chorom Shim;Jun-Oh Min;Boyeon Lee;Seo-Yeon Hong;Sun-Yong Ha
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.417-426
    • /
    • 2023
  • Rapid climate change has resulted in glacial retreat and increased meltwater inputs in the Antarctic Peninsula, including King George Island where Marian Cove is located. Consequently, these phenomena are expected to induce changes in the water column light properties, which in turn will affect phytoplankton communities. To comprehend the effects of glacial retreat on the marine ecosystem in Marian Cove, we investigated on phytoplankton biomass (chlorophyll-a, chl-a) and various environment parameters in this area in December 2021 and January 2022. The average temperature at the euphotic depth in January 2022 (1.41 ± 0.13 ℃) was higher than that in December 2021 (0.87 ± 0.17 ℃). Contrastingly, the average salinity was lower in January 2022 (33.9 ± 0.10 psu) than in December 2021 (34.1 ± 0.12 psu). Major nutrients, including dissolved inorganic nitrogen, phosphate, and silicate, were sufficiently high, and thus, did not act as limiting factors for phytoplankton biomass. In December 2021 and January 2022, the mean chl-a concentrations were 1.03 ± 0.64 and 0.66 ± 0.15㎍ L-1, respectively. The mean concentration of suspended particulate matter (SPM) was 24.9 ± 3.54 mgL-1 during the study period, with elevated values observed in the vicinity of the inner glacier. However, relative lower chl-a concentrations were observed near the inner glacier, possibly due to high SPM load from the glacier, resulting in reduced light attenuation by SPM shading. Furthermore, the proportion of nanophytoplankton exceeded 70% in the inner cove, contributing to elevated mean fractions of nanophytoplankton in the glacier retreat marine ecosystem. Overall, our study indicated that freshwater and SPM inputs from glacial meltwater may possibly act as main factors controlling the dynamics of phytoplankton communities in glacier retreat areas. The findings may also serve as fundamental data for better understanding the carbon cycle in Marian Cove.

Phytoplankton Response to Short-term Environmental Changes in the Vicinity of a Fish Cage Farm of Tongyeong Obi in Summer (통영 오비도 어류양식장 주변에서 하계 수계 내 단주기 환경요인의 변화에 따른 미세조류 반응)

  • Lee, Minji;Baek, Seung Ho
    • Journal of Marine Life Science
    • /
    • v.2 no.2
    • /
    • pp.62-69
    • /
    • 2017
  • In order to assess the potential environmental factors in the vicinity of a fish cage farm, we investigated the biotic and abiotic factors during a short-term period in summer 2016 in two inner stations of Tongyeong Obi. High water temperature on August 10th was apparent among the full depth of up to 29℃, which might have been related to the abnormally high temperatures of large amounts of the Changjiang River discharge along the Tongyeong coast. The concentration of nitrate+nitrite, ammonium, phosphate, and silicate ranged from 0.08 to 5.11 μM, 0.08 to 34.62 μM, 0.01 to 1.15 μM, and 1.46 to 31.79 μM, respectively. The nutrients were mainly supplied by precipitation and leaching from the bottom sediments in the fish culture farm area. It was not retained for a long duration because of the phytoplankton consumption and diffusion by water currents. The chlorophyll a concentration varied from 0.49 ㎍ l-1 to 7.39 ㎍ l-1. At that time, Chaetoceros debilis, C. pseudocurvisetus, and Pseudo-nitzschia delicatissima were rapidly proliferated and reached the level of 4.74 × 109 cells l-1. In particular, the lowest dissolved oxygen was recorded at 4.52 ㎍ l-1 at the bottom layer after bloom. Therefore, even though phytoplankton blooms in summer have frequently occurred in a fish culture farm area, the oxygen-deficient environments were not found in neither the surface nor bottom layers, which implied that the water masses might be well exchanged from the mouth of the northwest and southeast between Obi and Mireuk Island in the study area.

Development of Seasonal Habitat Suitability Indices for the Todarodes Pacificus around South Korea Based on GOCI Data (GOCI 자료를 활용한 한국 연근해 살오징어의 계절별 서식적합지수 모델 개발)

  • Seonju Lee;Jong-Kuk Choi;Myung-Sook Park;Sang Woo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1635-1650
    • /
    • 2023
  • Under global warming, the steadily increasing sea surface temperature (SST) severely impacts marine ecosystems,such as the productivity decrease and change in marine species distribution. Recently, the catch of Todarodes Pacificus, one of South Korea's primary marine resources, has dramatically decreased. In this study, we analyze the marine environment that affects the formation of fishing grounds of Todarodes Pacificus and develop seasonal habitat suitability index (HSI) models based on various satellite data including Geostationary Ocean Color Imager (GOCI) data to continuously manage fisheries resources over Korean exclusive economic zone. About 83% of catches are found within the range of SST of 14.11-26.16℃,sea level height of 0.56-0.82 m, chlorophyll-a concentration of 0.31-1.52 mg m-3, and primary production of 580.96-1574.13 mg C m-2 day-1. The seasonal HSI models are developed using the Arithmetic Mean Model, which showed the best performance. Comparing the developed HSI value with the 2019 catch data, it is confirmed that the HSI model is valid because the fishing grounds are formed in different sea regions by season (East Sea in winter and Yellow Sea in summer) and the high HSI (> 0.6) concurrences to areas with the high catch. In addition, we identified the significant increasing trend in SST over study regions, which is highly related to the formation of fishing grounds of Todarodes Pacificus. We can expect the fishing grounds will be changed by accelerating ocean warming in the future. Continuous HSI monitoring is necessary to manage fisheries' spatial and temporal distribution.

Five-year monitoring of microbial ecosystem dynamics in the coastal waters of the Yeongheungdo island, Incheon, Korea (대한민국 인천 영흥도 인근 해역 미소생태계의 5년간의 군집구조 변화 모니터링)

  • Sae-Hee Kim;Jin Ho Kim;Yoon-Ho Kang;Bum Soo Park;Myung-Soo Han;Jae-Hyoung Joo
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • In this study, changes in the microbial ecosystem of the Yeongheungdo island coastal waters were investigated for five years to collect basic data. To evaluate the influence of distance from the coast on the microbial ecosystem, four sites, coastal Site (S1) and 0.75, 1.5, and 3 km away from the coast, were set up and the changes in physicochemical and biological factors were monitored. The results showed seasonal changes in water temperature, dissolved oxygen, salinity, and pH but with no significant differences between sites. For nutrients, the concentration of dissolved inorganic nitrogen increased from 6.4 μM in April-June to 16.4 μM in July-November, while that of phosphorus and silicon phosphate increased from 0.4 μM and 2.5 μM in April-June to 1.1 μM and 12.0 μM in July-November, respectively. Notably, phosphorus phosphate concentrations were lower in 2014-2015 (up to 0.2 μM) compared to 2016-2018 (up to 2.2 μM), indicating phosphorus limitation during this period. However, there were no differences in nutrients with distance from the coast, indicating that there was no effect of distance on nutrients. Phytoplankton (average 511 cells mL-1) showed relatively high biomass (up to 3,370 cells mL-1) in 2014-2015 when phosphorus phosphate was limited. Notably, at that time, the concentration of dissolved organic carbon was not high, with concentrations ranging from 1.1-2.3 mg L-1. However, no significant differences in biological factors were observed between the sites. Although this study revealed that there was no disturbance of the ecosystem, further research and more basic data on the microecosystem are necessary to understand the ecosystem of the Incheon.

Improvement of Oxygen Isotope Analysis in Seawater samples with Stable Isotope Mass Spectrometer (질량분석기를 이용한 해수 중 산소안정동위원소 분석법의 개선)

  • Park, Mi-Kyung;Kang, Dong-Jin;Kim, Kyung-Ryul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.348-353
    • /
    • 2008
  • Oxygen isotope has not been used actively in water mass studies because of difficulties on the analysis though it has advantages as a water mass tracer. The most popular method to analysis the oxygen isotope ratio in water samples is equilibration method: isotopic equilibrium of water with $CO_2$ at constant temperature. The precision of oxygen isotope analysis using commercial automatic $H_2O/CO_2$ equilibrator is ${\pm}0.1%o$. This value is not sufficient for studies in open ocean. The object of this study is to improve the analytical precision enough to apply open ocean studies by modification of the instrument. When sample gas is transferred by the pressure difference, the fractionation which is preferential transportation of light isotope can be occurred since the long transportation path between the equilibrator and mass spectrometer. And the The biggest source of error during the analysis is long distance and large volume of the pathway of sample gas between. Therefore, liquid nitrogen trap and high vacuum system are introduced to the system. The precisions of 14 time analysis of same seawater sample are ${\pm}0.081%o$ and ${\pm}0.021%o$ by built-in system and by modified system in this study, respectively.

Development of Marine Ecotoxicological Standard Methods for Ulva Sporulation Test (파래의 포자형성률을 이용한 해양생태독성시험 방법에 관한 연구)

  • Han, Tae-Jun;Han, Young-Seok;Park, Gyung-Soo;Lee, Seung-Min
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 2008
  • As an aquatic ecotoxicity test method, a bioassay using the inhibition of sporualtion of the green macroalga, Ulva pertusa, has been developed. Optimal test conditions determined for photon irradiance, pH, salinity and temperature were $100\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $7{\sim}9$, $25{\sim}35\;psu$ and $15{\sim}20^{\circ}C$, respectively. The validity of the test endpoint was evaluated by assessing the toxicity of four metals (Cd, Cu, Pb, Zn) and elutriates of sewage or waste sludge collected from 9 different locations. When the metals were assayed, the $EC_{50}$ values indicated the following toxicity rankings: Cu ($0.062\;mg{\cdot}L^{-1}$) > Cd ($0.208\;mg{\cdot}L^{-1}$) > Pb ($0.718\;mg{\cdot}L^{-1}$) > Zn ($0.776\;mg{\cdot}L^{-1}$). When compared with other commonly used bioassays of metal pollution listed on US ECOTOX database, the sporualtion test proved to be the most sensitive. Ulva sporulation was significantly inhibited in all elutriates with the greatest and least effects observed in elutriates of sludge from industrial waste ($EC_{50}=6.78%$) and filtration bed ($EC_{50}=15.0%$), respectively. The results of the Spearman rank correlation analysis for $EC_{50}$ data versus the concentrations of toxicants in the sludge presented a significant correlation between toxicity and four heavy metals(Cd, Cu, Pb, Zn). The method described here is sensitive to toxicants, simple to use, easy to interpret and economical. It is also easy to procure samples and maintain cultures. The present method would therefore probably make a useful assessment of aquatic toxicity of a wide range of toxicants. In addition, the genus Ulva has a wide geographical distribution and species have similar reproductive processes, so the test method would have a potential application worldwide.

Report about First Repeated Sectional Measurements of Water Property in the East Sea using Underwater Glider (수중글라이더를 활용한 동해 최초 연속 물성 단면 관측 보고)

  • GYUCHANG LIM;JONGJIN PARK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.56-76
    • /
    • 2024
  • We for the first time made a successful longest continuous sectional observation in the East Sea by an underwater glider during 95 days from September 18 to December 21 2020 in the Korea along the 106 Line (129.1 °E ~ 131.5 °E at 37.9 °N) of the regular shipboard measurements by the National Institute of Fishery Science (NIFS) and obtained twelve hydrographic sections with high spatiotemporal resolution. The glider was deployed at 129.1 °E in September 18 and conducted 88-days flight from September 19 to December 15 2020, yielding twelve hydrographic sections, and then recovered at 129.2 °E in December 21 after the last 6 days virtual mooring operation. During the total traveled distance of 2550 km, the estimated deviation from the predetermined zonal path had an average RMS distance of 262 m. Based on these high-resolution long-term glider measurements, we conducted a comparative study with the bi-monthly NIFS measurements in terms of spatial and temporal resolutions, and found distinguished features. One is that spatial features of sub-mesoscale such as sub-mesoscale frontal structure and intensified thermocline were detected only in the glider measurements, mainly due to glider's high spatial resolution. The other is the detection of intramonthly variations from the weekly time series of temperature and salinity, which were extracted from glider's continuous sections. Lastly, there were deviations and bias in measurements from both platforms. We argued these deviations in terms of the time scale of variation, the spatial scale of fixed-point observation, and the calibration status of CTD devices of both platforms.