• 제목/요약/키워드: And fractal dimension

검색결과 423건 처리시간 0.024초

프랙탈 차원에 의한 소자 표면의 특성 (The Properties of Devices Surface by Fractal Dimension)

  • 홍경진;민용기;조재철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.149-151
    • /
    • 2006
  • The surface properties of electrical devices studied by fractal phenomenon were investigated. The SEM photographs of devices surface were changed by binary code and it were analyzed by fractal dimension. The void of devices surface was found by fractal program. The relation between grain density and electrical properties are able to expect to fractal dimension. The grain size in varistors surface was decreased by increasing of oxide antimony addition. The fractal dimension and electrical properties of devices surface was related to between grain boundary and grain density. The grain size was decreased by increasing of fractal dimensions.

  • PDF

윤활유 중지 마멸입자의 프랙탈 형상특징 추출 방법 (Extraction of Fractal Shape Characteristics of Wear Particles in Lubricant)

  • 박흥식;우규성;조연상;김동호;예규현
    • Tribology and Lubricants
    • /
    • 제22권5호
    • /
    • pp.276-281
    • /
    • 2006
  • The fractal dimension is quantitatively to define the irregular characteristic of the shape in natural. It can be useful in describing morphological characteristics of various wear particles. This paper was undertaken to diagnose failure condition for sliding members in lubrication by fractal dimension. It will be possible to diagnose wear mechanism, friction and damage state of machines through analysis of shape characteristics for wear particle on driving condition by fractal parameters. In this study, the calculating and analyzing methods of fractal dimensions were constructed for the condition monitoring and wear particle analysis in lubricant condition. So, we carried out the Friction and wear test with the ball on disk type tester, and the fractal parameters of wear particle in lubricated conditions were calculated. Fractal parameters were defined as texture fractal dimension ($D_{t}$), structure fractal dimension ($D_{s}$) and total fractal dimension (D).

Application of Fractal Geometry to Architectural Design

  • Lee, Myung-Sik
    • Architectural research
    • /
    • 제16권4호
    • /
    • pp.175-183
    • /
    • 2014
  • Contemporary architecture tends to deconstruct modern architecture based on rationalization just like reductionism and functionalism and secedes from it. It means change from mechanical to organic and ecological view of the world. According to these changes, consideration of a compositive relationship presented variety and complexity in architecture. Thus, the modern speculation based on rationalism cannot provide an alternative interpretation about complicated architectural phenomena. At this point in time, the purpose of this study is to investigate the possibilities of the fractal as an alternative tool of analysis and design in contemporary architecture. In this study, two major aspects are discussed. First, the fractal concepts just like 'fractal dimension', 'box-counting dimension' and 'fractal rhythm' can be applied to analysis in architecture. Second, the fractal formative principles just like 'scaling', 'superimposition trace', 'distortion' and 'repetition' can be applied to design in architecture. Fractal geometry similar to nature's patterned order can provide endless possibilities for analysis and design in architecture. Therefore further study of fractal geometry should be conducted synthetically from now on.

Crack location in beams by data fusion of fractal dimension features of laser-measured operating deflection shapes

  • Bai, R.B.;Song, X.G.;Radzienski, M.;Cao, M.S.;Ostachowicz, W.;Wang, S.S.
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.975-991
    • /
    • 2014
  • The objective of this study is to develop a reliable method for locating cracks in a beam using data fusion of fractal dimension features of operating deflection shapes. The Katz's fractal dimension curve of an operating deflection shape is used as a basic feature of damage. Like most available damage features, the Katz's fractal dimension curve has a notable limitation in characterizing damage: it is unresponsive to damage near the nodes of structural deformation responses, e.g., operating deflection shapes. To address this limitation, data fusion of Katz's fractal dimension curves of various operating deflection shapes is used to create a sophisticated fractal damage feature, the 'overall Katz's fractal dimension curve'. This overall Katz's fractal dimension curve has the distinctive capability of overcoming the nodal effect of operating deflection shapes so that it maximizes responsiveness to damage and reliability of damage localization. The method is applied to the detection of damage in numerical and experimental cases of cantilever beams with single/multiple cracks, with high-resolution operating deflection shapes acquired by a scanning laser vibrometer. Results show that the overall Katz's fractal dimension curve can locate single/multiple cracks in beams with significantly improved accuracy and reliability in comparison to the existing method. Data fusion of fractal dimension features of operating deflection shapes provides a viable strategy for identifying damage in beam-type structures, with robustness against node effects.

Crack Growth Behaviors of Cement Composites by Fractal Analysis

  • Won, Jong-Pil;Kim, Sung-Ae
    • KCI Concrete Journal
    • /
    • 제14권1호
    • /
    • pp.30-35
    • /
    • 2002
  • The fractal geometry is a non-Euclidean geometry which describes the naturally irregular or fragmented shapes, so that it can be applied to fracture behavior of materials to investigate the fracture process. Fractal curves have a characteristic that represents a self-similarity as an invariant based on the fractal dimension. This fractal geometry was applied to the crack growth of cementitious composites in order to correlate the fracture behavior to microstructures of cementitious composites. The purpose of this study was to find relationships between fractal dimensions and fracture energy. Fracture test was carried out in order to investigate the fracture behavior of plain and fiber reinforced cement composites. The load-CMOD curve and fracture energy of the beams were observed under the three point loading system. The crack profiles were obtained by the image processing system. Box counting method was used to determine the fractal dimension, D$_{f}$. It was known that the linear correlation exists between fractal dimension and fracture energy of the cement composites. The implications of the fractal nature for the crack growth behavior on the fracture energy, G$_{f}$ is apparent.ent.

  • PDF

측면 홈을 가지는 STS316 CT시험편의 정적 성장균열에 대한 프랙탈 기하학의 응용 (Application of Fractal Geometry on the Static Growing Crack of STS316 CT Specimen with a Side Groove)

  • 윤유성;권오헌
    • 한국안전학회지
    • /
    • 제17권4호
    • /
    • pp.38-44
    • /
    • 2002
  • The application of fractal concept provides an useful method in the study for the quantitative analysis of irregular variations like the fracture surfaces and crack profiles. Fractal curves have characteristics that represents a self-similarity based on the fractal dimension. The fractal dimensions were obtained by the box counting method. In this report, we obtained the nearly stable fractal dimensions of fracture crack profiles for STS316 with CT specimen as the crack advances and the relationships between crack length and fractal dimension. Moreover fractal fracture parameter that corresponds to J-R curve is shown by the relationships between fractal dimension and crack extension. From the results, we concluded that crack extension of high toughness material also shows the fractal characteristics, which can be used in order to evaluate the crack life precisely.

난류 예혼합 화염에서의 프랙탈 차원의 통계적 특성 (Statistical Characteristics of Fractal Dimension in Turbulent Prefixed Flame)

  • 이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.18-26
    • /
    • 2002
  • With the introduction of Fractal notation, various fields of engineering adopted fractal notation to express characteristics of geometry involved and one of the most frequently applied areas was turbulence. With research on turbulence regarding the surface as fractal geometry, attempts to analyze turbulent premised flame as fractal geometry also attracted attention as a tool for modeling, for the flame surface can be viewed as fractal geometry. Experiments focused on disclosure of flame characteristics by measuring fractal parameters were done by researchers. But robust principle or theory can't be extracted. Only reported modeling efforts using fractal dimension is flame speed model by Gouldin. This model gives good predictions of flame speed in unstrained case but not in highly strained flame condition. In this research, approaches regarding fractal dimension of flame as one representative value is pointed out as a reason for the absence of robust model. And as an extort to establish robust modeling, Presents methods treating fractal dimension as statistical variable. From this approach flame characteristics reported by experiments such as Da effect on flame structure can be seen quantitatively and shows possibility of flame modeling using fractal parameters with statistical method. From this result more quantitative model can be derived.

이목정 소유역의 하천차수를 고려한 프랙탈 차원의 산정 (Estimation of Fractal Dimension According to Stream Order in the leemokjung Subbasin)

  • 고영찬;선우중호
    • 한국수자원학회논문집
    • /
    • 제31권5호
    • /
    • pp.587-597
    • /
    • 1998
  • 기존의 연구자들은 하천길이의 프랙탈 차원은 유역내 전체 하천에 대해 균일하며 그 수치도 1.09~1.13로 상당히 크게 보았다. 그렇지만 국제수문개발계획의 대표유역중 하나인 평창강수계내 이목정 소유역을 대상으로 1/50,000, 1/25,000, 1/5,000의 3개 축척 지형도를 이용하여 프랙탈 차원을 산정한 결과 하천차수별로 서로 다른 프랙탈 차원을 갖는 것을 발견하였고, 또한 전체 하천으로 보아도 기존 연구자들이 제안한 수치보다 작은 수치를 보였다. 이목적 소유역내 하천의 프랙탈 차원을 산정한 결과에 의하면 기존의 국내외의 연구가 전체 하천을 균일한 프랙탈 차원을 갖는 것으로 보는 것과 달리 1차, 2차 하천은 1.033, 이보다 하천차주가 높은 3차, 4차 하천을 1.014의 값을 보이는 등 하천차수별로 프랙탈 차원이 다르게 산정되었다. 또한 전체적인 하천길이에 대한 프랙탈 차원도 1.027로서 국내외에서 제시된 기존의 하천길이에 대한 프랙탈 차원인 1.09~1.13 사이의 수치는 실제보다 너무 과대평가된 것으로 추정된다.

  • PDF

Fractal evaluation of the level of alligator cracking in pavements

  • Vallejo, Luis E.
    • Geomechanics and Engineering
    • /
    • 제4권3호
    • /
    • pp.219-227
    • /
    • 2012
  • Pavement management systems require systematic monitoring of pavement surfaces to determine preventive and corrective maintenance. The process involves the accumulation of large amounts of visual data, typically obtained from site visitation. The pavement surface condition is then correlated to a pavement distress index that is based on a scoring system previously established by state or federal agencies. The scoring system determines if the pavement section requires maintenance, overlay or reconstruction. One of the surface distresses forming part of the overall pavement distress index is the Alligator Crack Index (AC Index). The AC Index involves the visual evaluation of the crack severity of a section of a pavement as being low, medium, or high. This evaluation is then integrated into a formula in order to obtain the AC Index. In this study a quantification of the visual evaluation of the severity of alligator cracking is carried out using photographs and the fractal dimension concept from fractal theory. Pavements with low levels of cracking were found to have a fractal dimension equal to 1.051. Pavements with moderate levels of cracking had a fractal dimension equal to 1.1754. Pavements with high degrees of cracking had a fractal dimension that varied between 1.5037 (high) and 1.7111 (very high). Pavements with a level of cracking equal to 1.8976 represented pavements that disintegrated and developed potholes. Thus, the visual evaluation of the state of cracking of a pavement (the AC Index) could be enhanced with the use of the fractal dimension concept from fractal theory.

입자강화 복합재료의 파괴인성에 관한 프랙탈 해석 (Fractal analysis on fracture toughness of particulate composites)

  • 김엄기;남승훈;고성위
    • 한국해양공학회지
    • /
    • 제10권4호
    • /
    • pp.84-91
    • /
    • 1996
  • A fractal analysis on fracture surface of aluminium-particulate SiC composites was attempted. As the volume fraction of SiC in composites increases, the fractal dimension tends to increase. However, no correlation between the fractal dimension and the fracture toughness in terms of critical energy release rate was observed. Since the fractal dimension represents the roughness of fracture surface, the fracture toughness would be a function of not only fracture surface roughness but also additional parameters. Thus the applicability of fractal analysis to the estimation of fracture toughness must depend on the proper choice and interpretation of additioal paramerters. In this paper, the size of characteristic strctural unit for fracture was considered as an additional parameter. As a result, the size appeared to be a function of only volume fraction of SiC. Finally, a master curve for fracture toughness of aluminium-particulate SiC composites was proposed as a function of fractal dimension and volume fraction of SiC.

  • PDF