• Title/Summary/Keyword: Anchorage performance

Search Result 125, Processing Time 0.026 seconds

Flexural Test for a Monolithic Holed Web Prestressed Concrete (HWPC) Girder

  • Han, Man-Yop;Jin, Kyung-Suk;Choi, Sok-Hwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.77-87
    • /
    • 2010
  • Prestressed concrete (PSC) I-type girders have been used for span length around up to 40 m in domestic region. PSC girders are very cost effective girder type and extending their lengths more than 50 m will bring large benefit in cost. A new design method was proposed by combining two notable design concept in order to extend the applicable span length in this study. First of all, several numbers of openings was introduced in the girder web, and half of the anchorage devices were moved into the openings. In this way, large compressive stress developed at end zone was reduced, and the portion of design load coming from self-weight was reduced as well. Secondly, prestressing force was introduced in the girder not once at the initial stage, but through multiple loading stages. A full scale girder with the length of 50 m with the girder depth of 2 m was fabricated, and a flexural test was conducted in order to verify the performance of newly developed girder. Test results showed that the new holed web design concept can provide a way to design girders longer than 50 meters with the girder height of 2 m.

The Optimal Shape Design for the Compression Joint of Thermal Bridge Breaker using FEM (유한요소 해석을 통한 열교 차단장치의 압축판 최적형상 설계)

  • Shin, Dong-Hyeon;Kim, Young-Ho;Kim, Hyung-Joon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • It is important to eliminate thermal bridge for achieving passive and environmental-friendly buildings. Structural members may frequently act as thermal bridges that become a conduit of energy. it is emphasized that thermal bridge breaker (TBB) system is necessary for blocking thermal bridge of the structural members. This TBB system has to maintain a performance to tensile and compressive stress which arises in member section in order to being realized structurally. Thus, it is composed with anchorage devices which obtain continuity with structural members inside building and rebar of cantilever balcony, and compression joint which resist compression stress occurring to TBB. Applying method of TBB's compression joint is designed to have high strength with comparatively small element section which can cover external load. This study carried out finite elements method based on compression experiment. Throughout the FEM analysis, this study provides information on finding optimal shape for compression joint of TBB which can suitably apply to current building balcony of Korea.

Investigating the effect of bond slip on the seismic response of RC structures

  • Fallah, Mohammad Mehdi;Shooshtari, Ahmad;Ronagh, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.695-711
    • /
    • 2013
  • It is reasonable to assume that reinforced concrete (RC) structures enter the nonlinear range of response during a severe ground motion. Numerical analysis to predict the behaviour therefore must allow for the presence of nonlinear deformations if an accurate estimate of seismic response is aimed. Among the factors contributing to inelastic deformations, the influence of the degradation of the bond slip phenomenon is important. Any rebar slip generates an additional rotation at the end regions of structural members which are not accounted for in a conventional analysis. Although these deformations could affect the seismic response of RC structures considerably, they are often neglected due to the unavailability of suitable models. In this paper, the seismic response of two types of RC structures, designed according to the Iranian concrete code (ABA) and the Iranian seismic code (2800), are evaluated using nonlinear dynamic and static analyses. The investigation is performed using nonlinear dynamic and static pushover analysis considering the deformations due to anchorage slip. The nonlinear analysis results confirm that bond slip significantly influences the seismic behavior of RC structure leading to an increase of lateral deformations by up to 30% depending on the height of building. The outcomes also identify important parameters affecting the extent of this influence.

Construction Method Improvement of the FRP-plate Strengthening Method using the Velcro (벨크로를 이용한 FRP 플레이트 보강공법의 시공공법 개선)

  • Hong, Geon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.225-232
    • /
    • 2008
  • The object of this paper is to study the flexural strengthening effectiveness on the construction method of bonding of the FRP. The existing FRP flexural strengthening methods were divided into FRP sheet strengthening and FRP plate strengthening according to the FRP condition. For improving the existing construction method, this paper proposed the velcro type anchorage system for temporary bonding material, and flexural strengthening effects were tested. Test variables were bonding methods of the FRP strengthening materials, and total 4 specimens were tested. Following to the test results, it is shown that FRP-plate strengthening method using the velcro can get better workability than existing construction methods, and have excellent strengthening performance including flexural strength, stiffness, ductility and failure aspect.

Bond behaviors of shape steel embedded in recycled aggregate concrete and recycled aggregate concrete filled in steel tubes

  • Chen, Zongping;Xu, Jinjun;Liang, Ying;Su, Yisheng
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.929-949
    • /
    • 2014
  • Thirty one push-out tests were carried out in order to investigate the bond behavior between shape steel, steel tube (named steels) and recycled aggregate concrete (RAC), including 11 steel reinforced recycled aggregate concrete (SRRAC) columns, 10 recycled aggregate concrete-filled circular steel tube (RACFCST) columns and 10 recycled aggregate concrete-filled square steel tube (RACFSST) columns. Eleven recycled coarse aggregate (RCA) replacement ratios (i.e., 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%) were considered for SRRAC specimens, while five RCA replacement ratios (i.e., 0%, 25%, 50%, 75% and 100%), concrete type and length-diameter ratio for recycled aggregate concrete-filled steel tube (RACFST) specimens were designed in this paper. Based on the test results, the influences of all variable parameters on the bond strength between steels and RAC were investigated. It was found that the load-slip curves at the loading end appeared the initial slip earlier than the curves at the free end. In addition, eight practical bond strength models were applied to make checking computations for all the specimens. The theoretical analytical model for interfacial bond shear transmission length in each type of steel-RAC composite columns was established through the mechanical derivation, which can be used to design and evaluate the performance of anchorage zones in steel-RAC composite structures.

Behavior of Reinforced Dapped End Beams with T-headed Bar and Steel Fibers (헤디드 바와 강섬유로 보강된 Dapped End Beam의 구조 거동에 관한 실험적 연구)

  • Choi Jin Hyouk;Lee Chang Hoon;Lee Joo Ha;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.49-52
    • /
    • 2004
  • In this studies, Dapped End Beams(DEB) having disturbed regions were designed by using strut tie model, and the main purpose of this paper is that whether T-headed bars and Steel fibers will be present or not. The ability of DEB with T-headed bars have a superior performance rather than others, such as improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. The capacity of DEB with steel fibers also show increase of ductility, shear strength, fatigue strength and crack. Each DEB with both headed bars and steel fibers, headed bars, and steel fibers as a substitute reinforced steel in the disturbed regions and a DEB with only stirrup and tie reinforced steel were comparable. In contrast, the headed bar stirrups, the tie headed bars and the reinforced steel fibers did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by increasing the tension stiffening effect to account for high load effects.

  • PDF

Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study

  • Lu, Yi;Zhang, Luo;He, Zheng;Feng, Fan;Pan, Feng
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.405-421
    • /
    • 2021
  • To gain insight into the wind-induced safety concerns associated with attached tower cranes during the construction of super-tall buildings, a 606 m level frame-core tube super-tall building is selected to investigate the wind-induced vibration response and fragility of an outer-attached tower crane at all stages of construction. The wind velocity time history samples are artificially generated and used to perform dynamic response analyses of the crane to observe the effects of wind velocity and wind direction under its working and non-working resting state. The adverse effects of the relative displacement response at different connection supports are also identified. The wind-resistant fragility curves of the crane are obtained by introducing the concept of incremental dynamic analysis. The results from the investigation indicate that a large relative displacement between the supports can substantially amplify the response of the crane at high levels. Such an effect becomes more serious when the lifting arm is perpendicular to the plane of the connection supports. The flexibility of super-tall buildings should be considered in the design of outer-attached tower cranes, especially for anchorage systems. Fragility analysis can be used to specify the maximum appropriate height of the tower crane for each performance level.

A Experimental Study on Structural Behavior of Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널의 구조 거동에 대한 실험적 연구)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.11-18
    • /
    • 2018
  • As the height of the modular buildings increases, their stability becomes more and more dependent on the core. All traditional construction methods in structural concrete and steel can be utilized for cores in modular buildings but a core system with dry connection is more desirable to complete a greater degree of factory finish and faster erection of modular buildings. In order to do that, the hybrid PC(precast concrete) panel, which has a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, was developed, In this study the cyclic lateral loading test on the hybrid PC panel is carried out and the panel configurations are examined to enhance the structural performance in comparison with the RC wall. Experimental results show that the strength of hybrid PC panel is about 70% of thar ot RC wall and the anchorage of vertical reinforcing bar welded to C-shaped steel beam needs to be improved.

Emission Control Routes in Container Shipping between Korea-China

  • Je-Ho Hwang;Si-Hyun Kim
    • Journal of Korea Trade
    • /
    • v.27 no.3
    • /
    • pp.119-146
    • /
    • 2023
  • Purpose - As the severity of air pollution caused by the shipping industry is becoming evident, port authorities have started making efforts to reduce air pollutants. Considering the limitations of the currently implemented emission-control area (ECA) and vessel-speed reduction program (VSRP), which are narrow in the designation range and navigation behavior of ships, this study proposes an emission-control route (ECR) that can complement the aforementioned two environmental policies. Design/methodology - This study was conducted on Korea-China trade service routes (ports of call) of regular liners. This study employed vessel-specific data, which is from an automatic identification system (AIS), for 1,728 maritime transportations performed by 387 container vessels during one year (July 1, 2021, to June 30, 2022). Performing a scenario analysis, this study analyzed the effectiveness of reduced air-pollutant emissions. Findings - This study found that the implementation of ECRs could increase average voyage time by 12.38%-25.28% but reduced air-pollutant emissions by 29.02%-43.54%. Additionally, the increase in average voyage times reduces the anchorage time of ships outside ports, providing an incentive for ship operators to voluntarily participate in compliance with regulations, thereby contributing to the establishment of a virtuous cycle of air-environmental policies related to ships. Originality/value - This study aims to verify the policy effectiveness by designing an ECR scope for liner trade routes between Korea and China. Therefore, originality and the value of this study includes conceptualizing the ECR system, analyzing its environmental performance, and exploring new policies that can be implemented while complementing existing policies.

Behavior of 550MPa 43mm Hooked Bars Embedded in Beam-Column Joints (보-기둥 접합부에 정착된 550 MPa 43 mm 갈고리철근의 거동)

  • Bae, Min-Seo;Chun, Sung-chul;Kim, Mun-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.611-620
    • /
    • 2016
  • In the construction of nuclear power plants, only 420 MPa reinforcing bars are allowed and, therefore, so many large-diameter bars are placed, which results in steel congestion. Consequently, re-bar works are difficult and the quality of RC structures may be deteriorated. To solve the steel congestion, 550 MPa bars are necessary. Among many items for verifying structural performance of reinforced concrete with 550 MPa bars, the 43 mm hooked bars are examined in this study. All specimens failed by side-face blowout and the side cover explosively spalled at maximum loads. The bar force was initially transferred to the concrete primarily by bond along a straight portion. At the one third of maximum load, the bond reached a peak capacity and began to decline, while the hook bearing component rose rapidly. At failure, most load was resisted by the hook bearing. For confined specimens with hoops, the average value of test-to-prediction ratios by KCI code is 1.45. The modification factor of confining reinforcement which was not allowed for larger than 35 mm bars can be applied to 43 mm hooked bars. For specimens with 70 MPa concrete, the average value of test-to-prediction ratios by KCI code is 1.0 which is less than the values of the other specimens. The effects of concrete compressive strength should be reduced. An equation to predict anchorage capacity of hooked bars was developed from regression analysis including the effects of compressive strength of concrete, embedment length, side cover thickness, and transverse reinforcement index.