• Title/Summary/Keyword: Anchor free location

Search Result 16, Processing Time 0.021 seconds

Coefficient Allocated DV-Hop algorithm for Wireless Sensor Networks localization (무선 센서 네트워크를 위한 DV-Hop 기반 계수 할당을 통한 위치 인식 알고리즘)

  • Ekale, Etinge Martin;Lee, Chaewoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.837-840
    • /
    • 2010
  • Wireless Sensor Networks have been proposed for several location-dependent applications. For such systems, the cost and limitations of the hardware on sensing nodes prevent the use of range-based localization schemes that depend on absolute point to point distance estimates. Because coarse accuracy is sufficient for most sensor network applications, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. In this paper, we proposed a Coefficient Allocated DV-Hop (CA DV-Hop) algorithm which reduces node's location error by awarding a credit value with respect to number of hops of each anchor to an unknown node. Simulation results have verified the high estimation accuracy with our approach which outperforms the classical DV-Hop.

A Successive Region Setting Algorithm Using Signal Strength Ranking from Anchor Nodes for Indoor Localization in the Wireless Sensor Networks (실내 무선 센서 네트워크에서의 측위를 위하여 고정 노드 신호들의 크기 순위를 사용한 순차적 구역 설정 알고리즘)

  • Han, Jun-Sang;Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.6
    • /
    • pp.51-60
    • /
    • 2011
  • Researches on indoor localization using the wireless sensor network have been actively carried out to be used for indoor area where GPS signal is not received. Computationally efficient WCL(Weighted Centroid Localization) algorithm is shown to perform relatively well. However, to get the best performance for WCL all the anchor nodes must send signal with power to cover 96% of the network. The fact that outside the transmission range of the fixed nodes drastic localization error occurs results in large mean error and deviation. Due to these problems the WCL algorithm is not easily applied for use in the real indoor environment. In this paper we propose SRS(Succesive Region Setting) algorithm which sequentially reduces the estimated location area using the signal strength from the anchor nodes. The proposed algorithm does not show significant performance degradation corresponding to transmission range of the anchor nodes. Simulation results show that the proposed SRS algorithm has mean localization error 5 times lower than that of the WCL under free space propagation environment.

Experimental Analysis of Terminus and Horizontal Crack Behaviors in Continuously Reinforced Concrete Pavement (연속철근 콘크리트 포장 단부 및 수평균열 거동 실험적 분석)

  • Cho, Young-Kyo;Kim, Seong-Min;An, Zuog;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.81-91
    • /
    • 2011
  • This study was conducted to evaluate the necessity of the anchor lug system in continuously reinforced concrete pavement(CRCP) by comparing longitudinal displacements of CRCPs with and without anchor lugs, and to investigate the effect of horizontal cracking on CRCP performance by measuring the vertical displacements. The measurements before and after the anchor lug section was separated were conducted for 12 days in June, and for 14 days in August after the abrupt displacements according to cutting disappeared, respectively. This short term measurement results showed that when anchor lugs were installed, a daily displacement variation at any location was less than 0.1mm; therefore, longitudinal movements were negligibly small. When there were no anchor lugs, longitudinal displacements mainly occurred near the free end and the displacement variation was small; therefore, an expansion joint system seems to be employed at a CRCP terminus without installing anchor lugs. However, further studies are needed to verify the terminus behavior due to annual temperature changes. The horizontal crack width variation was ignorable and did not affect the vertical displacement of the slab. Therefore, the horizontal crack did not delaminate the slab and did not seem to reduce the structural capacity and performance of CRCP.

Analysis of Localization Scheme for Ship Application Using Received Signal Strength (수신 신호 세기를 이용한 선박용 실내 위치 추정 알고리즘 분석)

  • Lee, Jung-Kyu;Lee, Seong Ro;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.643-650
    • /
    • 2014
  • Recently, the wireless communication applications are studied in various environment by the development of short range communication system like wireless sensor networks. This paper presents the analysis of localization schemes for ship application using received signal strength. The localization schemes using received signal strength from wireless networks are classified under two methods, which are Range based method and Range free method. Range based methods estimate the location with least square estimation based on estimated distance using path-loss model. Range free methods estimated the location with the information of anchor nodes linked to target. Simulation results show the appropriate localization scheme for each cabin environments based on the empirical path-loss model in warship's internal space.

Two-Phase Localization Algorithm in Wireless Sensor Networks (무선 센서 네트워크에서의 2단계 위치 추정 알고리즘)

  • Song Ha-Ju;Kim Sook-Yeon;Kwon Oh-Heum
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.172-188
    • /
    • 2006
  • Sensor localization is one of the fundamental problems in wireless sensor networks. Previous localization algorithms can be classified into two categories, the GGB (Global Geometry-Based) approaches and the LGB (Local Geometry-Based). In the GGB approaches, there are a fixed set of reference nodes of which the coordinates are pre-determined. Other nodes determine their positions based on the distances from the fixed reference nodes. In the LGB approaches, meanwhile, the reference node set is not fixed, but grows up dynamically. Most GGB algorithms assume that the nodes are deployed in a convex shape area. They fail if either nodes are in a concave shape area or there are obstacles that block the communications between nodes. Meanwhile, the LGB approach is vulnerable to the errors in the distance estimations. In this paper, we propose new localization algorithms to cope with those two limits. The key technique employed in our algorithms is to determine, in a fully distributed fashion, if a node is in the line-of-sight from another. Based on the technique, we present two localization algorithms, one for anchor-based, another for anchor-free localization, and compare them with the previous algorithms.

  • PDF

An Improved DV-Hop Localization Algorithm in Wireless Ad Hoc Networks (무선 애드 혹 네트워크에서 향상된 DV-Hop 기반 위치인식 알고리즘)

  • Lee, Sang-Woo;Lee, Dong-Yul;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.69-78
    • /
    • 2009
  • DV-Hop algorithm is not accurate in estimating geographic location of nodes because the average size for one hop is calculated without considering of the positioning error. In this paper, a novel algorithm based on DV-Hop algorithm is proposed for the approach to estimating the average size of a hop by minimizing anchor's positioning error using Least Square Error with other anchors. Moreover, unknown nodes have their own average size for one hop to compensate for the location error of the unknown occurring as more than the minimum hop counts to the distance. Simulation results show that the proposed algorithm has more accuracy than DV-Hop has in positioning.