• Title/Summary/Keyword: Anchor free location

Search Result 16, Processing Time 0.013 seconds

Multi-scale face detector using anchor free method

  • Lee, Dong-Ryeol;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.47-55
    • /
    • 2020
  • In this paper, we propose one stage multi-scale face detector based Fully Convolution Network using anchor free method. Recently almost all state-of-the-art face detectors which predict location of faces using anchor-based methods rely on pre-defined anchor boxes. However this face detectors need to hyper-parameters and additional computation in training. The key idea of the proposed method is to eliminate hyper-parameters and additional computation using anchor free method. To do this, we apply two ideas. First, by eliminating the pre-defined set of anchor boxes, we avoid the additional computation and hyper-parameters related to anchor boxes. Second, our detector predicts location of faces using multi-feature maps to reduce foreground/background imbalance issue. Through Quantitative evaluation, the performance of the proposed method is evaluated and analyzed. Experimental results on the FDDB dataset demonstrate the effective of our proposed method.

Multihop Range-Free Localization with Virtual Hole Construction in Anisotropic Sensor Networks (비등방성 센서 네트워크에서 가상 홀을 이용한 다중 홉 Range-Free 측위 알고리즘)

  • Lee, Sangwoo;Kim, Sunwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.33-42
    • /
    • 2013
  • This paper presents a multihop range-free localization algorithm to estimate the physical location of a normal node with local connectivity information in anisotropic sensor networks. In the proposed algorithm, a normal node captures the detour degree of the shortest path connecting an anchor pair and itself by comparing the measured hop count and the expected hop count, and the node estimates the distances to the anchors based on the detour degree. The normal node repeats this procedure with all anchor combinations and pinpoints its location using the obtained distance estimates. The proposed algorithm requires fewer anchors and less communication overhead compared to existing range-free algorithms. We showed the superiority of the proposed algorithm over existing range-free algorithms through MATLA simulations.

An Accuracy Enhancement for Anchor Free Location in Wiresless Sensor Network (무선 센서 네트워크의 고정 위치에 대한 정확도 향상)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.77-87
    • /
    • 2018
  • Many researches have been focused on localization in WSNs. However, the solutions for localization in static WSN are hard to apply to the mobile WSN. The solutions for mobile WSN localization have the assumption that there are a significant number of anchor nodes in the networks. In the resource limited situation, these solutions are difficult in applying to the static and mobile mixed WSN. Without using the anchor nodes, a localization service cannot be provided in efficient, accurate and reliable way for mixed wireless sensor networks which have a combination of static nodes and mobile nodes. Also, accuracy is an important consideration for localization in the mixed wireless sensor networks. In this paper, we presented a method to satisfy the requests for the accuracy of the localization without anchor nodes in the wireless sensor networks. Hop coordinates measurements are used as an accurate method for anchor free localization. Compared to the other methods with the same data in the same category, this technique has better accuracy than other methods. Also, we applied a minimum spanning tree algorithm to satisfy the requests for the efficiency such as low communication and computational cost of the localization without anchor nodes in WSNs. The Java simulation results show the correction of the suggested approach in a qualitative way and help to understand the performance in different placements.

A Novel Range-Free Localization Algorithm for Anisotropic Networks to enhance the Localization Accuracy (비등방성 네트워크에서 위치 추정의 정확도를 높이기 위한 향상된 Range-Free 위치 인식 기법)

  • Woo, Hyun-Jae;Lee, Chae-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.595-605
    • /
    • 2012
  • DV-Hop is one of the well known range-free localization algorithms. The algorithm works well in case of isotropic network since the sensor and anchor nodes are placed in the entire area. However, it results in large errors in case of anisotropic networks where the hop count between nodes is not linearly proportional to the Euclidean distance between them. Hence, we proposed a novel range-free algorithm for anisotropic networks to improve the localization accuracy. In the paper, the Euclidean distance between anchor node and unknown node is estimated by the average hop distance calculated at each hop count with hop count and distance information between anchor nodes. By estimating the unknown location of nodes with the estimated distance estimated by the average hop distance calculated at each hop, the localization accuracy is improved. Simulation results show that the proposed algorithm has more accuracy than DV-Hop.

Localization Algorithm for Wireless Sensor Networks Based on Modified Distance Estimation

  • Zhao, Liquan;Zhang, Kexin
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1158-1168
    • /
    • 2020
  • The distance vector-hop wireless sensor node location method is one of typical range-free location methods. In distance vector-hop location method, if a wireless node A can directly communicate with wireless sensor network nodes B and C at its communication range, the hop count from wireless sensor nodes A to B is considered to be the same as that form wireless sensor nodes A to C. However, the real distance between wireless sensor nodes A and B may be dissimilar to that between wireless sensor nodes A and C. Therefore, there may be a discrepancy between the real distance and the estimated hop count distance, and this will affect wireless sensor node location error of distance vector-hop method. To overcome this problem, it proposes a wireless sensor network node location method by modifying the method of distance estimation in the distance vector-hop method. Firstly, we set three different communication powers for each node. Different hop counts correspond to different communication powers; and so this makes the corresponding relationship between the real distance and hop count more accurate, and also reduces the distance error between the real and estimated distance in wireless sensor network. Secondly, distance difference between the estimated distance between wireless sensor network anchor nodes and their corresponding real distance is computed. The average value of distance errors that is computed in the second step is used to modify the estimated distance from the wireless sensor network anchor node to the unknown sensor node. The improved node location method has smaller node location error than the distance vector-hop algorithm and other improved location methods, which is proved by simulations.

A Range-Free Localization Algorithm for Sensor Networks with a Helicopter-based Mobile Anchor Node (센서 네트워크에서 모바일 앵커 노드(헬기)를 이용한 위치인식 알고리즘)

  • Lee, Byoung-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.750-757
    • /
    • 2011
  • Wireless Sensor Network is composed of a lot of sensor nodes that are densely deployed in a field. So generally this sensor nodes are spreaded using Helicopter or Fixed wing. Each node delivers own location and acquired information to user when it detects specific events. In this paper, we propose localization algorithm without range information in wireless sensor network using helicopter. Helicopter broadcasts periodically beacon signal for sensor nodes. Sensor nodes stored own memory this beacon signal until to find another beacon point(satisfied special condition). This paper develops a localization mechanism using the geometry conjecture(perpendicular bisector of a chord) to know own location. And the simulation results demonstrate that our localization scheme outperforms Centroid, APIT in terms of a higher location accuracy.

Multi-Objective Optimization for a Reliable Localization Scheme in Wireless Sensor Networks

  • Shahzad, Farrukh;Sheltami, Tarek R.;Shakshuki, Elhadi M.
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.796-805
    • /
    • 2016
  • In many wireless sensor network (WSN) applications, the information transmitted by an individual entity or node is of limited use without the knowledge of its location. Research in node localization is mostly geared towards multi-hop range-free localization algorithms to achieve accuracy by minimizing localization errors between the node's actual and estimated position. The existing localization algorithms are focused on improving localization accuracy without considering efficiency in terms of energy costs and algorithm convergence time. In this work, we show that our proposed localization scheme, called DV-maxHop, can achieve good accuracy and efficiency. We formulate the multi-objective optimization functions to minimize localization errors as well as the number of transmission during localization phase. We evaluate the performance of our scheme using extensive simulation on several anisotropic and isotropic topologies. Our scheme can achieve dual objective of accuracy and efficiency for various scenarios. Furthermore, the recently proposed algorithms require random uniform distribution of anchors. We also utilized our proposed scheme to compare and study some practical anchor distribution schemes.

PMDV-hop: An effective range-free 3D localization scheme based on the particle swarm optimization in wireless sensor network

  • Wang, Wenjuan;Yang, Yuwang;Wang, Lei;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.61-80
    • /
    • 2018
  • Location information of individual nodes is important in the implementation of necessary network functions. While extensive studies focus on localization techniques in 2D space, few approaches have been proposed for 3D positioning, which brings the location closer to the reality with more complex calculation consumptions for high accuracy. In this paper, an effective range-free localization scheme is proposed for 3D space localization, and the sensitivity of parameters is evaluated. Firstly, we present an improved algorithm (MDV-Hop), that the average distance per hop of the anchor nodes is calculated by root-mean-square error (RMSE), and is dynamically corrected in groups with the weighted RMSE based on group hops. For more improvement in accuracy, we expand particle swarm optimization (PSO) of intelligent optimization algorithms to MDV-Hop localization algorithm, called PMDV-hop, in which the parameters (inertia weight and trust coefficient) in PSO are calculated dynamically. Secondly, the effect of various localization parameters affecting the PMDV-hop performance is also present. The simulation results show that PMDV-hop performs better in positioning accuracy with limited energy.

Localization Algorithm without Range Information in Wireless Sensor Networks

  • Lee, Byoung-Hwa;Lee, Woo-Yong;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.297-306
    • /
    • 2007
  • A sensor network is composed of a large number of sensor nodes that are densely deployed in a field. Each sensor performs a sensing task for detection specific events. After detecting this event, location information of the sensor node is very important. Range-based scheme of the proposed approaches typically achieve high accuracy on either node-to-node distances or angles, but this scheme have a drawback because all sensor nodes have the special hardware. On the other hand, range-free scheme provides economic advantage because of no needed hardware even if that leads to coarse positioning accuracy. In this paper, we propose a range-free localization algorithm without range information in wireless sensor networks. This is a range-free approach and uses a small number of anchor nodes and known sensor nodes. This paper develops a localization mechanism using the geometry conjecture (perpendicular bisector of a chord). The conjecture states that a perpendicular bisector of a chord passes through the center of the circle.

  • PDF

Range-free Localization Based on Residual Force-vector with Kalman Filter in Wireless Sensor Networks (무선 센서 네트워크에서 칼만 필터를 이용한 잔여 힘-벡터 기반 Range-free 위치인식 알고리즘)

  • Lee, Sang-Woo;Lee, Chae-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.647-658
    • /
    • 2010
  • Many localization schemes estimate the locations of radio nodes based on the physical locations of anchors and the connectivity from the anchors. Since they only consider the knowledge of the anchors without else other nodes, they are likely to have enormous error in location estimate unless the range information from the anchors is accurate or there are sufficiently many anchors. In this paper, we propose a novel localization algorithm with the location knowledge of anchors and even one-hop neighbors to localize unknown nodes in the uniform distance from all the one-hop neighbors without the range information. The node in the uniform distance to its all neighbors reduces the location error relative to the neighbors. It further alleviates the location error between its actual and estimated locations. We evaluate our algorithm through extensive simulations under a variety of node densities and anchor placement methods.