• 제목/요약/키워드: Anammox bacteria

검색결과 25건 처리시간 0.037초

Detection and Potential Abundances of Anammox Bacteria in the Paddy Soil

  • Khanal, Anamika;Lee, Seul;Lee, Ji-Hoon
    • 한국환경농학회지
    • /
    • 제39권1호
    • /
    • pp.26-35
    • /
    • 2020
  • BACKGROUND: Microbes that govern a unique biochemical process of oxidizing ammonia into dinitrogen gas, such as anaerobic ammonium oxidation (anammox) have been reported to play a pivotal role in agricultural soils and in oceanic environments. However, limited information for anammox bacterial abundance and distribution in the terrestrial habitats has been known. METHODS AND RESULTS: Phylogenetic and next-generation sequencing analyses of bacterial 16S rRNA gene were performed to examine potential anammox bacteria in paddy soils. Through clone libraries constructed by using the anammox bacteria-specific primers, some clones showed sequence similarities with Planctomycetes (87% to 99%) and anammox bacteria (94% to 95%). Microbial community analysis for the paddy soils by using Illumina Miseq sequencing of 16S rRNA gene at phylum level was dominated by unclassified Bacteria at 33.2 ± 7.6%, followed by Chloroflexi at 20.4 ± 2.0% and Acidobacteria at 17.0 ± 6.5%. Planctomycetes that anammox bacteria are belonged to was 1.5% (± 0.3) on average from the two paddy soils. CONCLUSION: We suggest evidence of anammox bacteria in the paddy soil. In addition to the relatively well-known microbial processes for nitrogen-cycle, anammox can be a potential contributor on the cycle in terrestrial environments such as paddy soils.

혐기성 암모늄 산화 반응기 내 붉은색 입상슬러지의 미생물 군집구조 분석 (Analysis on the Microbial Community Structure of Red Granule in the Anaerobic Ammonium Oxidation Reactor)

  • 배효관;박경순;정윤철;정진영
    • 대한환경공학회지
    • /
    • 제28권10호
    • /
    • pp.1055-1064
    • /
    • 2006
  • 본 연구소에서는 혐기성 입상슬러지를 충진한 UASB 반응기와 탄소섬유를 충진한 배양기를 조합하여 아주 느린 성장특성을 가진 혐기성 암모늄 산화균의 배양을 시도하였다. 연속배양 180일 이후, 유입질소부하가 0.6 kg $N/m^3-d$였을 때, 평균 질소전환율은 0.54 kg $N/m^3-d$로 나타났다. 검은 혐기성 입상슬러지는 연속배양시간이 지남에 따라 갈색과 붉은 색으로 변화되었으며, anammox 반응기는 붉은색 입상슬러지가 많을수록 높은 활성도를 나타내었다. 따라서, 붉은색 입상슬러지를 채취하여 분자생물학적 방법을 이용하여 미생물 군집구조를 분석하였다. 클로닝 및 계통분류학적 분지도 작성 결과, anammox UASB 반응조의 붉은색 입상슬러지에서 발견된 미생물 종류는 anammox 미생물과 더불어 문단위의 4가지 다른 미생물, Proteobacteria, Acidobacteria, Chlorobi와 Chloroflexi로 나타났다. Anammox UASB 반응조내의 붉은색 입상슬러지에서는 clone의 개수를 기준으로 anammox 미생물이 약 25%가 존재하였고 $\beta$-proteobacteria가 우점하고 있는 양상을 보여주었으며, 본 연구의 클로닝 정보와 AMX368 FISH 탐침자를 이용해 in silico 실험을 수행한 결과 AMX368과 정확히 들어맞는 anammox 미생물 clone 하나와 하나의 염기서열이 변이를 일으킨 11개의 anammox 미생물 clone을 확인할 수 있었다. 사상균 형태의 Chloroflexi는 혐기조건 입상 슬러지의 형성과 관련이 있는 것으로 판단되었다. FISH 수행결과, anammox 미생물은 붉은색 입상 슬러지에 우점하고 있는 것으로 나타났다.

공정 안정성에 대한 입상 및 고정화 혐기성 암모늄 산화균의 질소제거효율 비교 (Comparison of nitrogen removal efficiency on process stability for granular and immobilized anammox bacteria)

  • 최대희;배효관;정진영;김상현
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.195-206
    • /
    • 2014
  • Immobilization of anaerobic ammonium oxidizing bacteria has been studied to enhance the biomass retention of the slowly growing bacteria and the process stability. The purpose of this study was to compare the nitrogen removal efficiency of granular and immobilized anammox bacteria with poly vinyl alcohol and alginate. The specific anammox activity of the granular, homoginized and immobilized anammox bacteria were $0.016{\pm}0.0002gN/gVSS/d$, $0.011{\pm}0.001gN/gVSS/d$ and $0.007{\pm}0.0005gN/gVSS/d$, respectively. Although the activity decreased to 43.7 % of the original one due to low pH and $O_2$ exposure during the homogination and the immobilization, it was rapidly recovered within 7 days in the following continuous culture. When synthetic T-N concentrations of 100, 200, 400, 800 mg/L were fed, the immobilized anammox bacteria showed higher nitrogen removal efficiencies at all operational conditions than those of granular anammox bacteria. When the sludge retention time was shorten below 30.7 days and the reject water was fed, the nitrite removal efficiency of the granular anammox bacteria dropped to 8 % of the initial value, while that of the immobilized anammox bacteria was maintained over 95 % of the initial one. The immobilization with poly vinyl alcohol and alginate would be a feasible method to improve the performance and stability of the anammox process.

주공정에서 아질산화-혐기성 암모늄 산화법에 의한 단축질소제거공정 연구동향 (Main-stream Partial Nitritation - Anammox (PN/A) Processes for Energy-efficient Short-cut Nitrogen Removal)

  • 박홍근;유대환
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.96-108
    • /
    • 2018
  • Large efforts have recently been made on research and development of sustainable and energy-efficient short-cut nitrogen removal processes owing to strong attention to the energy neutral/positive wastewater treatment system. Anaerobic ammonium oxidizing bacteria (anammox bacteria) have been highlighted since 1990's due to their unique advantages including 60% less energy consumption, nearly 100% reduction for carbon source requirement, and 80% less sludge production. Side-stream short-cut nitrogen removal using anammox bacteria and partial nitritation anammox (PN/A) has been well established, whereas substantial challenges remain to be addressed mainly due to undesired main-stream conditions for anammox bacteria. These include low temperature, low concentrations of ammonia, nitrite, free ammonia, free nitrous acid or a combination of those. In addition, an anammox side-stream nitrogen management is insufficient to reduce overall energy consumption for energy-neutral or energy positive water resource recovery facility (WRRF) and at the same time to comply with nitrogen discharge regulation. This implies the development of the successful main-stream anammox based technology will accelerate a conversion of current wastewater treatment plants to sustainable water and energy recovery facility. This study discusses the status of the research, key mechanisms & interactions of the protagonists in the main-stream PN/A, and control parameters and major challenges in process development.

암모니아 산화균 및 아나목스균의 배양을 통한 파일롯 규모 단일 아나목스 반응기의 성공적인 시운전 (Successful start-up of pilot-scale single-stage ANAMMOX reactor through cultivation of ammonia oxidizing and ANAMMOX bacteria)

  • 최대희;진양오;이철우;정진영
    • 상하수도학회지
    • /
    • 제32권5호
    • /
    • pp.371-379
    • /
    • 2018
  • The lack of seed sludges for Ammonium Oxidizing Bacteria (AOB) and slow-growing ANaerobic AMMonium OXidation (ANAMMOX) bacteria is one of the major problem for large-scale application. In this study, $24m^3$ of single-stage SBR (Sequencing Batch Reactor) was operated to remove nitrogen from reject water using AOB and ANAMMOX bacteria cultivated from activated sludge in the field. The ANAMMOX activity was found after 44 days of cultivation in the ANAMMOX cultivation reactor, and then $0.66kg\;N/m^3/d$ of the nitrogen removal rate was achieved at $0.78kg\;N/m^3/d$ of the nitrogen loading rate at 153 days of cultivation. The AOB cultivation reactor showed $0.2kg\;N/m^3/d$ of nitrite production rate at $0.4kg\;N/m^3/d$ of nitrogen loading rate after 36 days of operation. The cultivated ANAMMOX bacteria and AOB was mixed into the single-stage SBR. The feed distribution was applied to remove total nitrogen stably in the single-stage SBR. The nitrogen removal rate in the single-stage SBR was gradually enhanced with an increase of specific activities of both AOB and ANAMMOX bacteria by showing $0.49kg\;N/m^3/d$ of the nitrogen removal rate at $0.56kg\;N/m^3/d$ of the nitrogen loading rate at 54 days of operation.

Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting

  • Wang, Tingting;Cheng, Lijun;Zhang, Wenhao;Xu, Xiuhong;Meng, Qingxin;Sun, Xuewei;Liu, Huajing;Li, Hongtao;Sun, Yu
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권7호
    • /
    • pp.1288-1299
    • /
    • 2017
  • Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene (hzo) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between $2.13{\times}10^5$ and $1.15{\times}10^6$ 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

연속회분식 반응기를 이용한 혐기성 암모늄 산화균 농후배양에서의 정성 및 정량적 미생물 군집구조 분석 (Qualitative and Quantitative Analysis of Microbial Community Structure in the Sequencing Batch Reactor for Enriching ANAMMOX Consortium)

  • 배효관;정진영
    • 대한환경공학회지
    • /
    • 제31권10호
    • /
    • pp.919-926
    • /
    • 2009
  • 혐기성 암모늄 산화공정을 안정화시키기 전에 많은 양의 식종 미생물 투여가 필요하므로 혐기성 암모늄 산화균의 농후배양은 실규모의 혐기성 암모늄 산화 반응기를 운영할 때 필수적인 과정이다. 본 연구에서는 활성슬러지 미생물을 식종한 연속 회분식 반응기를 이용하여 혐기성 암모늄 산화균을 농후배양하고, 미생물 군집구조의 변화를 관찰하여 농후배양 결과를 검증하였다. 혐기성 암모늄 산화균의 농후배양은 70일간 시행되었고, 농후배양 후 활성시험에서 $NH_4\;^+$$NO_2\;^-$의 기질제거효율이 각각 98.5%와 90.7%로 관찰되어 혐기성 암모늄 산화균의 배양이 성공적으로 수행된 것으로 판단되었다. 계통분류학적 분지도 작성 결과, 다양하였던 Planctomycetes 문(phylum)의 미생물 군집구조가 농후배양 이후에 현저하게 단순해졌다는 것이 밝혀졌다. 농후배양 이후 발견된 36개의 clone들 모두가 혐기성 암모늄 산화균이었으며, Candidatus Brocadia (36%) 와 Candidatus Anammoxoglobus (64%) 속(genus)에 속하였다. RTQ-PCR (real-time quantitative PCR)을 통해 혐기성 암모늄 산화균을 정량한 결과, 혐기성 암모늄 산화 상향류식 연속 배양기에서 1년 이상 선택 배양된 붉은색 혐기성암모늄 산화 입상 슬러지에 비해 혐기성 암모늄 산화균의 16S rDNA 농도가 74.8%인 것으로 나타났다. 상기의 분자생물학적 분석을 통해 70일간 농후배양된 활성슬러지가 혐기성 암모늄 산화 실용화 공정의 접종 미생물로 활용 가능할 것으로 판단되었다.

돈사폐수의 혐기성 질소제거에 있어서 온도의 영향 : 낮은 현장 온도범위에서의 활성 (Effects of Temperature in Anaerobic Nitrogen Removal Process from Piggery Waste : Activities in Ranges of Low Field-temperature)

  • 황인수;민경석
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.258-263
    • /
    • 2006
  • ANAMMOX (Anaerobic ammonium oxidation) reactor, which was cultivated ANAMMOX bacteria in mesophilic condition ($35^{\circ}C$), was operated to investigate the effects of temperature. In $20{\sim}30^{\circ}C$ of operation condition, which was assumed as field-temperature, total N removal and $NH_4-N$ removal rate were declined from about 2.50 and $1.27kg\;N/{m^3}_{reactor}-day$ (0.06 and 0.03 kg N/kgVSS/day) to 1.62 and $0.41kg\;N/{m^3}_{reactor}-day$ (0.04 and 0.01 kg N/kgVSS/day), In this range of temperature, ANAMMOX had very low activities but acid fermentation bacteria and denitrifiers, which were competitors of substrates, had high activities relatively. Though operation temperature was higher than inhibition condition for two months, ANAMMOX activities could not been recovered once they were inhibited by low temperature. This fact was resulted from very slow doubling time of ANAMMOX bacteria. This study shows that maintenance device of optimal temperature is necessary required in field application of ANAMMOX.

2중 구조의 PVA/alginate 겔 비드에서의 독립영양 단일공정 질소제거효율 시뮬레이션 (Simulated Nitrogen Removal for Double-Layered PVA/Alginate Structure for Autotrophic Single-Stage Nitrogen Removal)

  • 배효관
    • 한국물환경학회지
    • /
    • 제38권4호
    • /
    • pp.171-176
    • /
    • 2022
  • Recently, an autotrophic single-stage nitrogen removal (ASSNR) process based on the anaerobic ammonium oxidation (ANAMMOX) reaction has been proven as an economical ammonia treatment. It is highly evident that double-layered gel beads are a promising alternative to the natural biofilm for ASSNR because of the high mechanical strength of poly(vinyl alcohol) (PVA)/alginate structure and efficient protection of ANAMMOX bacteria from dissolved oxygen (DO) due to the thick outer layer. However, the thick outer layer results in severe mass transport limitation and consequent lowered bacterial activity. Therefore, the effects of the thickness of the outer layer on the overall reaction rate were tested in the biofilm model using AQUASIM for ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and ANAMMOX bacteria. A thickness of 0.5~1.0 mm is preferred for the maximum total nitrogen (TN) removal. In addition, a DO of 0.5 mg/L resulted in the best total nitrogen removal. A higher DO induces NOB activity and consequent lower TN removal efficiency. The optimal density of AO B and NO B density was 1~10% for a 10% ANAMMOX bacterial in the double-layered PVA/alginate gel beads. The real effects of operating parameters of the thickness of the outer layer, DO and concentrations of biomass balance should be intensively investigated in the controlled experiments in batch and continuous modes.

Study on the optimization of partial nitritation using air-lift granulation reactor for two stage partial nitritation/Anammox process

  • Jung, Minki;Oh, Taeseok;Jung, Kyungbong;Kim, Jaemin;Kim, Sungpyo
    • Membrane and Water Treatment
    • /
    • 제10권4호
    • /
    • pp.265-275
    • /
    • 2019
  • This study aimed to develop a compact partial nitritation step by forming granules with high Ammonia-Oxidizing Bacteria (AOB) fraction using the Air-lift Granulation Reactor (AGR) and to evaluate the feasibility of treating reject water with high ammonium content by combination with the Anammox process. The partial nitritation using AGR was achieved at high nitrogen loading rate ($2.25{\pm}0.05kg\;N\;m-3\;d^{-1}$). The important factors for successful partial nitritation at high nitrogen loading rate were relatively high pH (7.5~8), resulting in high free ammonia concentration ($1{\sim}10mg\;FA\;L^{-1}$) and highly enriched AOB granules accounting for 25% of the total bacteria population in the reactor. After the establishment of stable partial nitritation, an effluent $NO_2{^-}-N/NH_4{^+}-N$ ratio of $1.2{\pm}0.05$ was achieved, which was then fed into the Anammox reactor. A high nitrogen removal rate of $2.0k\; N\;m^{-3}\;d^{-1}$ was successfully achieved in the Anammox reactor. By controlling the nitrogen loading rate at the partial nitritation using AGR, the influent concentration ratio ($NO_2{^-}-N/NH_4{^+}-N=1.2{\pm}0.05$) required for the Anammox was controlled, thereby minimizing the inhibition effect of residual nitrite.