• Title/Summary/Keyword: Analyzing and Evaluating System

Search Result 206, Processing Time 0.026 seconds

Online State-of-health(SOH) estimation for a LiMn2O4 cell based on fuzzy-logic

  • Kim, Jonghoon;Nikitenkov, Dmitry;Park, Jungpil
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.447-448
    • /
    • 2013
  • This paper investigates a new approach based on the fuzzy-logic controlled methodology that is suitable for analyzing and evaluating large format $LiMn_2O_4$ cell performance via online state-of-health (SOH) estimation for energy storage system (ESS) applications. First of all, the values of the cell resistance R and maximum cell capacity $Q_{max}$ are calculated from three factors such as voltage, current, and time that were measured by discharging/charging sequence. Then, using two values R and $Q_{max}$ previously calculated, present SOH of an arbitrary $LiMn_2O_4$ cell can be estimated using the defined fuzzy-logic inference system. The main advantage of this approach is wide parameters tuning possibility for good correspondence of SOH decay with other accurate estimation method and the possibility to perform suitable online SOH estimation.

  • PDF

Applying New Algorithm on AC Auto-Transformer Feeding System under Multiple Trains Operating (AT 교류 철도급전계통 내 다수 열차 운행시 새로운 계통해석 알고리즘 연구)

  • 전용주;추동욱;전명수;임성정;김재철
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.712-719
    • /
    • 2000
  • This paper presents a new algorithm to analyze a train voltages of multi-trains in auto-transformer-fed AC railway systems, using electrical equivalent change. The train current will be divided into circulation and return currents, and these current values are the same. By evaluating each current independently, the result will be more precise. The train current flows through the all auto-transformer corresponding to track impedance. In analyzing the railway system, the algorithm is based on the K.C.L, K.V.L, superposition and circuit separation method. Multi-train's voltages are determined by calculating the catenary voltage at each train's position and adding up these train's voltage drop. Case studies use a field operational data, show that tile proposed method is easily applied.

  • PDF

The Evaluation Method of Software Usability based on UI (UI 중심의 소프트웨어 사용성 평가 방법)

  • Lee, Ha-Young;Yang, Hae-Sool
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.105-117
    • /
    • 2013
  • Viewpoint about the quality of software is various. But, from the end-user point of view, user interface of software may be all to express the quality of software. But the detailed evaluation criteria were not established about usability evaluation method based on user interface so far, though user interface of software is the main object of usability quality characteristics. In this paper, we established a system about the method extracting and evaluating some quality characteristics elements measurable form user interface of software by analyzing the relationship between the elements constructing quality characteristics and user interface related to quality evaluation of software. We expect that this result of study will be a fundamental study adapting and evaluating to various types of user interface.

Evolution of Automatic Ordering System in Retail Market : Analyzing Inventory Data

  • Paik, SiHyun;Frazier, DeWayne P.;Mark, Isenhoff
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.1-14
    • /
    • 2015
  • The purpose of this paper is to reveal two problems in the existing inventory systems in retail market, and to suggest a Two-Bin System under Automatic Ordering System considering only base-stock. Large retailers already have a sophisticated inventory system based on an automatic ordering principle. However, why does the out-of-stock (OOS) happen in large discount stores in spite of having a good inventory system? This paper suggests two systems after finding the root causes concerning the previous question. For evaluating the performance of each system, the random 200 data set in each sample group was generated from MINITAB 16 and obeyed the Poisson distribution. The existing inventory system in retail market cannot help generating OOS due to indwelling contradiction in itself. The reasons are the ordering deadline and the relationship between ordering quantity and base stock. This paper also demonstrates that these previous studies on inventory fall into the closed loop. Also the paper shows that the performance of the replenishment policy was better than traditional methods dealing with ordering quantity and base stock.

DEVELOPMENT OF A SIMPLIFIED MODEL FOR ANALYZING THE PERFORMANCE OF KALIMER-600 COUPLED WITH A SUPERCRITICAL CARBON DIOXIDE BRAYTON ENERGY CONVERSION CYCLE

  • Seong, Seung-Hwan;Lee, Tae-Ho;Kim, Seong-O
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.785-796
    • /
    • 2009
  • A KALIMER-600 concept which is a type of sodium-cooled fast reactor, has been developed at KAERI. It uses sodium as a primary coolant and is a pool-type reactor to enhance safety. Also, a supercritical carbon dioxide ($CO_2$) Brayton cycle is considered as an alternative to an energy conversion system to eliminate the sodium water reaction and to improve efficiency. In this study, a simplified model for analyzing the thermodynamic performance of the KALIMER-600 coupled with a supercritical $CO_2$ Brayton cycle was developed. To develop the analysis model, a commercial modular modeling system (MMS) was adopted as a base engine, which was developed by nHance Technology in USA. It has a convenient graphical user interface and many component modules to model the plant. A new user library for thermodynamic properties of sodium and supercritical $CO_2$ was developed and attached to the MMS. In addition, some component modules in the MMS were modified to be appropriate for analysis of the KALIMER-600 coupled with the supercritical $CO_2$ cycle. Then, a simplified performance analysis code was developed by modeling the KALIMER-600 plant with the modified MMS. After evaluating the developed code with each component data and a steady state of the plant, a simple power reduction and recovery event was evaluated. The results showed an achievable capability for a performance analysis code. The developed code will be used to develop the operational strategy and some control logics for the operation of the KALIMER-600 with a supercritical $CO_2$ Brayton cycle after further studies of analyzing various operational events.

A Study on Performance Analysis of 3kW Grid-Connected PV Systems (3kW급 계통연계형 태양광발전시스템의 성능특성 비교분석에 관한 연구)

  • So, Jung-Hun;Choi, Ju-Yeop;Yu, Gwon-Jong;Jung, Young-Seok;Choi, Jae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • 3kW grid connected PV(photovoltaic) systems have been constructed for evaluating and analyzing performance of PV system at FDTC(field demonstration test center) in Korea, PV systems installed in FDTC have been operating and monitored since November 2002. As climatic and irradiation conditions have been varied through long-term field test, data acquisition system has been constructed for measuring performance of PV system to observe the overall effect of environmental conditions on their operation characteristics. The performance of PV systems has been evaluated and analyzed for component perspective(PV array and power conditioning system) and global perspective(system efficiency, capacity factor, and electrical power energy) by field test. By the results, it is very important to develop optimal design technology of grid connected PV system.

Decision Variable Design of Discrete Systems using Simulation Optimization (시뮬레이션 최적화를 이용한 이산형 시스템의 결정변수 설계)

  • 박경종
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.63-69
    • /
    • 1999
  • The research trend of the simulation optimization has been focused on exploring continuous decision variables. Yet, the research in discrete decision variable area has not been fully studied. A new research trend for optimizing discrete decision variables ha just appeared recently. This study, therefore, deals with a discrete simulation method to get the system evaluation criteria required for designing a complex probabilistic discrete event system and to search the effective and reliable alternatives to satisfy the objective values of the given system through a on-line, single run with the short time period. Finding the alternative, we construct an algorithm which changes values of decision variables and a design alternative by using the stopping algorithm which ends the simulation in a steady state of system. To avoid the loss of data while analyzing the acquired design alternative in the steady state, we provide background for estimation of an auto-regressive model and mean and confidence interval for evaluating correctly the objective function obtained by small amount of output data through simulation with the short time period. In numerical experiment we applied the proposed algorithm to (s, S) inventory system problem with varying Δt value. In case of the (s, S) inventory system, we obtained good design alternative when Δt value is larger than 100.

  • PDF

Construction Management Evaluation Model using Risk Index Modeling in Construction Phase (위험도 모델링을 이용한 시공단계의 감리업무 평가모델)

  • Ryu Jin-Young;Mo Yong-Woon;Kim Kyung-Rai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.3 s.3
    • /
    • pp.89-100
    • /
    • 2000
  • The purpose of this study is to maximize project efficiencies in construction management by analyzing hierarchical factors that effect in project supervision system, and consequently constructing managerial CSF(Critical Success Factors). For this study, the tools for evaluating operating and management abilities of site engineers are built from analyzing status and issues, deducing influence factors and rating cardinal scales of these factors from survey results. These evaluation tools are reflected to the construction supervision decision making process so that can improve project management effectiveness.

  • PDF

A Study on Prediction of Propulsive Energy Loss Related to Automatic Steering of Ships in Following Seas (추사피중에서 자동조타로써 항행하는 선박의 추진에너지 손실량 평가에 관한 연구)

  • 이경우;손경호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1996.04a
    • /
    • pp.77-92
    • /
    • 1996
  • When an automatic course-keeping is concerned as is quite popular in modern navigation the closed-loop steering system consists of autopilot device power unit (or telemotor unit) steering gear magnetic or gyro compass and ship dynamics. The consideration of irregular disturbances to ship dyanmics and a few non-linear mechanisms involved in the system inevitably or artificially are known to be very important in properly evaluating or analyzing the automatic steering system. In the present study the mathematical model of each element of an automatic steering system is derived which takes account of a fex non-linear mechanisms. PD(Proportional-Derivative) controller and low-pass filter with a weather adjustment are adopted to modelling the characteristics of an autopilot. The calculation method of imposing irregular disturbances to ship dynamics is proposed where irregular disturbances implying irregular wave and the fluctuating component of wind. For he evaluation of automatic steering system of ships in the open seas an important term "performance index" is introduced from the viewpoint of energy saving which derived from the concept of energy loss on ship propulsion. Finally the present methods are applied to two typical types of ship ; an ore carrier and a fishing boat. The various effects of linear and/or non-linear control constants of autopilot on propulsive energy loss are investigated to validate and clarify the present smulation technique.

  • PDF

Proposal of a framework for evaluating the operational impact of cyber attacks on aviation weapons systems(EOICA) (항공무기체계 사이버공격에 대한 작전영향성평가 프레임워크 제안)

  • Hong, Byoung-jin;Kim, Wan-ju;Lee, Soo-jin;Lim, Jae-sung
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.35-45
    • /
    • 2020
  • Cyber attacks on the aviation weapon system, a state-of-the-art asset, have become a reality and are approaching as a constant threat. However, due to the characteristics of embedded software of the current aviation weapon system, it is managed and operated without connection to the network in peacetime, so the response management to cyber attacks is relatively weak. Therefore, when a cyber attack becomes a reality, it is urgent to prepare and evaluate measures for the adverse effects that such attack will have on the execution of the Air Tasking Order(ATO). In this paper, we propose a framework for operational impact assessment in order to avoid confusion in ATO execution and systematic response to cyber attacks on aviation weapons systems. The proposed framework is designed to minimize the negative impact on operations against cyber attacks that may occur under no warning by analyzing the impact on air operations for each aviation weapon system and standardizing countermeasures for this. In addition, it supports the operational commander to make a quick decision to command for the execution of the operation even in a situation where a cyber attack occurs.