• 제목/요약/키워드: Analytical validation

검색결과 588건 처리시간 0.038초

QbD6시그마 프로세스를 통한 D-항원 정량 시험법의 유효성과 동등성에 관한 연구 (A Study on the Efficacy and Equivalence of D-antigen Quantitative Analysis through QbD6sigma Process)

  • 김강희;김현정
    • 품질경영학회지
    • /
    • 제50권4호
    • /
    • pp.831-842
    • /
    • 2022
  • Purpose: This study carried out the Quality by Design (QbD)6σ process to verify the effectiveness and equivalence of the finished D-antigen quantitative test method, and compared the OFAT-based method validation and test result acceptance criteria with the Analytical Quality by Design (AQbD)-based method validation and test method. This is a study on how to reduce the risk of delay in permit change by increasing the reliability of permit data in the existing method by statistically analyzing the results. Methods: With the QbD6σ process, the effectiveness and equivalence of the D-antigen quantitative test method were verified with the data of the existing test method and the new test method. Results: Method validation tests are performed based on AQbD. Critical Method Parameters are identified through risk assessment, and single/combined actions are verified by designing and performing tests for Critical Method Parameters (analysis of variance, full factorial design method). Method validation can be effectively accomplished with the QbD6σ process. Conclusion: The use of QbD6σ can be used to achieve satisfactory results for both pharmaceutical companies and regulators by using appropriate statistical analytical methods for method validation as required by regulatory agencies.

포인트와 라인 세그먼트의 해석적 에러 검증을 위한 확률기반 시뮬레이션 모델에 관한 연구 (A Study on Stochastic Simulation Models to Internally Validate Analytical Error of a Point and a Line Segment)

  • 홍성철;주용진
    • Spatial Information Research
    • /
    • 제21권2호
    • /
    • pp.45-54
    • /
    • 2013
  • 해석적 또는 시뮬레이션 오차 모델은 공간 데이터가 가지는 위치오차의 분포를 설명 하는데 유용하다. 그러나 두 오차 모델은 위치오차를 모델링을 하기위하여 다른 접근 방법을 이용하므로 정의된 조건 내에서 올바른 위치오차를 예측 하는지 확인하는 내적 검증을 필요로 한다. 이에 본 논문은 오차타원과 에러밴드 모델을 이용하여 제시한 포인트와 라인 세그먼트 시뮬레이션 오차 모델을 내부적으로 검증하는 방법을 제안하였다. 시뮬레이션 오차 모델은 분산-공분산 행렬(variance-covariance matrix)의 변수에 의해 규정된 확률분포에 따라 몬테카를로 시뮬레이션을 이용하여 위치오차들을 생성한다. 검증절차에서는 시뮬레이션 모델에 의한 위치오차의 집합을 해석적 오차 모델에 의한 이론적 위치오차와 비교하였다. 결과적으로 제안된 시뮬레이션 오차 모델은 정의된 위치오차에 따라 동일한 공간 데이터의 위치적 불확실성을 실현함을 확인할 수 있었다.

Validation of an analytical method for cyanide determination in blood, urine, lung, and skin tissues of rats using gas chromatography mass spectrometry (GC-MS)

  • Shin, Min-Chul;Kwon, Young Sang;Kim, Jong-Hwan;Hwang, Kyunghwa;Seo, Jong-Su
    • 분석과학
    • /
    • 제32권3호
    • /
    • pp.88-95
    • /
    • 2019
  • This study was conducted to establish the analytical method for the determination of cyanide in blood, urine, lung and skin tissues in rats. In order to detect or quantify the sodium cyanide in above biological matrixes, it was derivatized to Pentafluorobenzyl cyanide (PFB-CN) using pentafluorobenzyl bromide (PFB-Br) and then reaction substance was analyzed using gas chromatography mass spectrometer (GC/MS)-SIM (selected ion monitoring) mode. The analytical method for cyanide determination was validated with respect to parameters such as selectivity, system suitability, linearity, accuracy and precision. No interference peak was observed for the determination of cyanide in blank samples, zero samples and lower limit of quantification (LLOQ) samples. The lowest limit detection (LOD) for cyanide was $10{\mu}M$. The linear dynamic range was from 10 to $200{\mu}M$ for cyanide with correlation coefficients higher than 0.99. For quality control samples at four different concentrations including LLOQ that were analyzed in quintuplicate, on six separate occasions, the accuracy and precision range from -14.1 % to 14.5% and 2.7 % to 18.3 %, respectively. The GC/MS-based method of analysis established in this study could be applied to the toxicokinetic study of cyanide on biological matrix substrates such as blood, urine, lung and skin tissues.

Development and validation of an analytical method to quantify baphicacanthin A by LC-MS/MS and its application to pharmacokinetic studies in mice

  • Jeon, So Yeon;Kim, San;Park, Jin-Hyang;Song, Im-Sook;Han, Young Taek;Choi, Min-Koo
    • 분석과학
    • /
    • 제35권2호
    • /
    • pp.60-68
    • /
    • 2022
  • In this study, we developed and validated a sensitive analytical method to quantify baphicacanthin A in mouse plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The standard calibration curves for baphicacanthin A ranged from 0.5 to 200 ng/mL and were linear, with an r2 of 0.985. The inter- and intra-day accuracy and precision and the stability fell within the acceptance criteria. Besides, we investigated the pharmacokinetics of baphicacanthin A following its intravenous (5 mg/kg) and oral administration (30 mg/kg). Intravenously injected baphicacanthin A showed biphasic elimination kinetics with high clearance and volume of distribution values. Furthermore, baphicacanthin A showed a rapid absorption but low aqueous solubility (182.51±0.20 mg/mL), resulting in low plasma concentrations and low oral bioavailability (2.49 %). Thus, we successfully documented the pharmacokinetic properties of baphicacanthin A using this newly developed sensitive LC-MS/MS quantification method, which could be used in future lead optimization and biopharmaceutic studies.

Analytical Method Validation for Bioequivalence Test : A Practical Approach

  • Kim, Chong-Kook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.158-169
    • /
    • 2002
  • 본 발표에서는 약물 분석 중 특히 생체 매질을 이용하여 임상약리학적 연구나 생체 내 이용률(bioavailability) 연구, 생물학적 동등성(bioequivalence) 연구를 하는 경우의 분석법 검증(bioanalytical method validation)에 대하여 상세히 설명하고자 한다.

  • PDF

소변 중 다환방향족탄화수소 대사체의 분석법 확립 및 교차분석 (Method Development and Cross Validation of Analysis of Hydroxylated Polycyclic Aromatic Hydrocarbons (OH-PAHs) in Human Urine)

  • 박나연;전중대;구혜령;김정환;이은희;이경무;문철진;고영림
    • 한국환경보건학회지
    • /
    • 제41권5호
    • /
    • pp.358-367
    • /
    • 2015
  • Objectives: This study was performed to evaluate the analytical method for PAH metabolites in human urine using enzyme hydrolysis and solid-phase extraction coupled with LC-(ESI)-MS/MS technique. Methods: We employed HPLC tandem mass spectrometry techniques with appropriate pre-treatment for analysis of 16 OH-PAHs in human urine. Samples were hydrolysis by ${\beta}$-flucuronidase/Aryl sulfatase, and target compounds were extracted by solid-phase extraction with a strata-x cartridge. Cross-validation was performed between Eulji University and Green Cross laboratories with 200 human urine samples. Results: The accuracies were between 90.3% and 118.8%, and precisions (relative standard deviations) were lower than 10%. The linearity obtained was satisfying for the 16 OH-PAH compounds, with a coefficient of determination ($r^2$) higher than 0.99. The results of cross-validation at the two organizations were compared by ICC (interclass correlation coefficient) values. The cross-validation results were excellent or good for all compounds. Conclusion: An analytical method was validated for low nanogram levels of 16 OH-PAHs in human urine. Also, satisfying results were obtained for method validation such as accuracy, precision and ICC of cross-validation.

화장품 중 zinc pyrithione 분석방법 개발에 대한 연구 (A study on the development of analytical method for zinc pyrithione in cosmetics)

  • 정정설;배경미;손승환;박정우;김지현;홍성택;선일식
    • 분석과학
    • /
    • 제28권3호
    • /
    • pp.160-167
    • /
    • 2015
  • 이 연구에서는 화장품 중 사용한도 성분으로 지정되어 있으나 아직 분석방법이 개발되지 않은 살균 보존 성분으로 사용되는 zinc pyrithione (ZnPT)에 대한 분석방법을 개발 확립하기 위한 목적으로 국 내외 자료 및 문헌을 조사하여 분석방법을 설정하였으며, 분석방법의 유효성 확인에 필요한 base matrix 시료의 선정을 위해 대상성분들의 사용량 및 사용제품들에 대한 자료를 조사하였다. Base matrix 시료를 선정·제조한 후 분석방법 유효성 확인 절차에 따라 각 대상성분들에 대한 분석방법의 유효성을 확인하였으며 실험실간 분석방법의 유효성 확인 수행을 통해 개발된 분석방법을 검증하여 확립하였다. 최종적으로 실제 시중 유통 화장품을 대상으로 개발된 분석방법을 적용하여 분석방법의 적합성을 검증하였다. 이 연구를 통해 개발된 분석방법을 '화장품 중 배합한도 성분 분석법 가이드라인'으로 제시함으로서 국내 시장 유통화장품의 검정에 활용되어 품질의 향상 및 국민 보건 안전성이 증진될 것이며 국내 화장품 산업의 국제 경쟁력 강화로 인해 수출 증대에 기여할 것으로 기대된다.

An HPLC-UV-based quantitative analytical method for Chrysanthemum morifolium: development, validation, and application

  • Jung, Dasom;Jin, Yan;Kang, Seulgi;Lee, Heesoo;Park, Keunbae;Li, Ke;Kim, Jin Hak;Geum, Jeong Ho;Lee, Jeongmi
    • 분석과학
    • /
    • 제32권4호
    • /
    • pp.139-146
    • /
    • 2019
  • A simple and reliable analytical method based on high-performance liquid chromatography-ultraviolet detection was established for the analysis of the flowers of Chrysanthemum morifolium (CM). Luteolin-7-O-glucoside (LU7G) was chosen as a target analyte considering its content, availability, and ease of analysis. Chromatographic separation of LU7G was achieved using a Phenomenex Gemini $C_{18}$ column ($250{\times}4.6mm$, $5{\mu}m$) run with a mobile phase consisting of 0.5 % acetic acid in water and 0.5 % acetic acid in acetonitrile at a flow rate of $1.0mL\;min^{-1}$. The detection wavelength and column temperature were set at 350 nm and $40^{\circ}C$, respectively. Method validation was performed according to the AOAC guidelines and the method was specific, linear ($R^2=0.9991$ for $50-300{\mu}g\;mL^{-1}$), precise (${\leq}3.91%$RSD), and accurate (100.1-105.7 %). The limits of detection and quantification were 3.62 and $10.96{\mu}g\;mL^{-1}$, respectively. The established method was successfully applied to determine the contents of LU7G in various batches of bulk CM extracts and labscale CM extract. The developed method is a readily applicable method for the quality assessment of CM and its related products.

예측모형의 구축과 검증: 소화기암연구 사례를 중심으로 (Development and Validation of a Prediction Model: Application to Digestive Cancer Research)

  • 권용한;한경화
    • Journal of Digestive Cancer Research
    • /
    • 제11권3호
    • /
    • pp.157-164
    • /
    • 2023
  • Prediction is a significant topic in clinical research. The development and validation of a prediction model has been increasingly published in clinical research. In this review, we investigated analytical methods and validation schemes for a clinical prediction model used in digestive cancer research. Deep learning and logistic regression, with split-sample validation as an internal or external validation, were the most commonly used methods. Furthermore, we briefly introduced and summarized the advantages and disadvantages of each method. Finally, we discussed several points to consider when conducting prediction model studies.