• 제목/요약/키워드: Analytical sensitivity

검색결과 600건 처리시간 0.025초

An analytical solution to the vibration characteristics for continuous girder bridge-track coupling system and its application

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Zhang, Yuntai;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.601-612
    • /
    • 2021
  • To study the vibration characteristics of a high-speed railway continuous girder bridge-track coupling system (HSRCBT), a coupling vibration analysis model of an m-span continuous girder bridge-subgrade-track system with n-span approach bridge was established. The model was based on the energy and its variational method, where both the interlaminar slip and shear deformation effects were considered. In addition, the free vibration equations and natural boundary conditions of the HSRCBT were derived. Further, according to the coordination principle of deformation and mechanics, an analytical method for calculating the natural vibration frequencies of the HSRCBT was obtained. Three typical bridge-subgrade-track coupling systems of high-speed railway were taken and the results of finite element analysis were compared to those of the analytical method. The errors between the simulation results and calculated values of the analytical method were less than 3%, thus verifying the analytical method proposed in this paper. Finally, the analytical method was used to investigate the influence of the number of the approach bridge spans and the interlaminar stiffness on the natural vibration characteristics of the HSRCBT based on the degree of sensitivity. The results suggest the approach bridges have a critical number of spans and in general, the precision requirements of the analysis could be met by using 6-span approach bridges. The interlaminar vertical compressive stiffness has very little influence on the low-order natural vibration frequency of HSRCBT, but does have a significant influence on higher-order natural vibration frequency. As the interlaminar vertical compressive stiffness increases, the degree of sensitivity to interlaminar stiffness of each of the HSRCBT natural vibration characteristics decrease and gradually approach zero.

A Simple Analytical Model for MEMS Cantilever Beam Piezoelectric Accelerometer and High Sensitivity Design for SHM (structural health monitoring) Applications

  • Raaja, Bhaskaran Prathish;Daniel, Rathnam Joseph;Sumangala, Koilmani
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권2호
    • /
    • pp.78-88
    • /
    • 2017
  • Cantilever beam MEMS piezoelectric accelerometers are the simplest and most widely used accelerometer structure. This paper discusses the design of a piezoelectric accelerometer exclusively for SHM applications. While such accelerometers need to operate at a lower frequency range, they also need to possess high sensitivity and low noise floor. The availability of a simple model for deflection, charge, and voltage sensitivities will make the accelerometer design procedure less cumbersome. However, a review of the open literature suggests that such a model has not yet been proposed. In addition, previous works either depended on FEM analysis or only reported on the fabrication and characterization of piezoelectric accelerometers. Hence, this paper presents, for the first time, a simple analytical model developed for the deflection, induced voltage, and charge sensitivity of a cantilever beam piezoelectric accelerometer.The model is then verified using FEM analysis for a range of different cases. Further, the model was validated by comparing the induced voltages of an accelerometer estimated using this model with experimental voltages measured in the accelerometer after fabrication. Subsequently, the design of an accelerometer is demonstrated for SHM applications using the analytical model developed in this work. The designed accelerometer has 60 mV/g voltage sensitivity and 2.4 pC/g charge sensitivity, which are relatively high values compared to those of the piezoresistive and capacitive accelerometers for SHM applications reported earlier.

보조변수법을 이용한 Zwicker 라우드니스의 설계민감도 (Design Sensitivity Analysis of Zwicker's Loudness Using Adjoint Variable Method)

  • 왕세명;권대일;김좌일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1432-1436
    • /
    • 2006
  • Feasibility of optimizing Zwicker's loudness has been shown by using MSC/NASTRAN, SYSNOISE, and a semi-analytical design sensitivity by Wang and Kang. Design sensitivity analysis of Zwicker's loudness is developed by using ANSYS, COMET, and an adjoint variable method in order to reduce computation. A numerical example shows significant reduction of computation time for design sensitivity analysis.

  • PDF

유도결합 플라스마 원자방출 분광법에서 perfluoroalkoxy(PFA) nebulizer와 microconcentric nebulizer(MCN)을 이용한 double membrane desolvator(DMD)의 분석능력연구 (Study on the Analytical Performance of Double Membrane Desolvator(DMD) with Perfluoroalkoxy(PFA) and Microconcentric Nebulizer(MCN) in Inductively Coupled Plasma Atomic Emission Spectrometry)

  • 설춘근;임흥빈
    • 분석과학
    • /
    • 제14권1호
    • /
    • pp.21-27
    • /
    • 2001
  • 본 실험에서는 유도결합 플라스마 원자방출 분광법 (ICP-AES)에서 perfluoroalkoxy (PFA) nebulizer와 microconcentric nebulizer (MCN)을 이용하여 본 실험실에서 제작된 double membrane desolvator (DMD)의 분석능력을 연구하였다. MCN과 비교하여 PFA nubulizer는 수용액 시료의 경우에는 DMD-ICP-AES에서 비슷한 분석감도를 보였으나, isopropyl alcohol 시료에서는 좀 더 나은 분석감도를 보였다. PFA nebulizer는 여러 가지 산들에 견디기 때문에 HCI, $H_2SO_4$ 뿐만 아니라 HF 용액도 도입하여 분석할 수 있었는데, 모두 2% 미만의 상대표준편차로 분석되었다. 기억효과를 측정한 결과, 신호가 1% 미만으로 감소되는 rinse-out time은 PFA에서는 35초인 반면 MCN은 45초로 얻어졌다.

  • PDF

Analytical Model of Salt Budget in the Upper Indian River Lagoon, Florida USA

  • Kim, Young-Taeg
    • Ocean and Polar Research
    • /
    • 제26권1호
    • /
    • pp.33-42
    • /
    • 2004
  • Effect of freshwater discharge on the long-term salt balance in the Northern and Central Indian River Lagoon (IRL) is successfully simulated by a new analytical solution to a water balance-based one-dimensional salt conservation equation. Sensitivity tests show that the salinity levels drop abruptly even during the dry season (November to May) due to the high surface runoff discharge caused by tropical storms, depressions, and passage of cold fronts. Increasing surface runoff and direct precipitation has risen by ten times, lowering the salinity level down to 12psu in the Northern Central zone, and to 17 psu in the Northern zone. However, the salinity level in the Southern Central zone has decreased to 25 psu. High sensitivity of the Northern Central zone to freshwater discharge can be partially explained by a rapid urbanization in this zone. During the dry season, less sensitivity of the Southern Central zone to the increased surface runoff is attributed to the proximity of the zone to the Sebastian Inlet and a strong diffusion condition possibly resulting from the seawater intrusion to the surficial aquifer at the Vero Beach. During the wet season, however, the whole study area is highly sensitive to freshwater discharge due to the weak diffusion conditions. High sensitivity of the IRL to the given diffusion conditions guarantees that the fresh-water release occurs during strong wind conditions, achieving both flood control in the drainage basin and a proper salinity regime in the IRL.

경계법을 이용한 형상최적화 문제의 설계민감도 해석 및 응용 (A Boundary Method for Shape Design Sensitivity Analysis for Shape Optimization Problems and its Application)

  • 최주호;곽현구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.355-362
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in various problems. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem and fillet problem are chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in these problems.

  • PDF

해석적 방법에 의한 맨드릴형 광-음향센서의 감도특성 분석 (Sensitivity Analysis of a Mandrel Type Fiber Optic Acoustic Sensor Using an Analytical Method)

  • 임종인;노용래
    • 한국음향학회지
    • /
    • 제19권3호
    • /
    • pp.92-99
    • /
    • 2000
  • 본 논문에서는 외부 음향신호에 대한 맨드릴형 광-음향센서의 반응특성을 이론적으로 해석하고, 재질변수 및 형상변수에 따른 음향감도를 해석적으로 분석하였다. 그리고 유한요소법으로 분석한 결과와 비교하여 해석적 분석결과의 타당성을 검증하였다. 그 결과, 대부분 일치하는 경향성을 보여주고 있으므로 해석적인 방법으로 대략적인 경향성 분석을 행하고, 필요한 영역에서 유한요소법을 이용하여 정밀한 해석을 하는 것이 광-음향센서의 최적구조를 설계하기 위한 경제적인 방법인 것으로 나타났다.

  • PDF

초공동(超空洞) 유동 문제의 형상 설계민감도 해석 (Shape Design Sensitivity Analysis of Supercavitating Flow Problem)

  • 최주호;곽현구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1047-1052
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-touse features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for and optimization procedure are addressed in this flow problem.

  • PDF

First Derivative Spectrophotometric and Gas-Liquid Chromatographic Determination of Caffeine in Foods and Pharmaceuticals III. Simultaneous assay of caffeine and some antihistaminics

  • Abdel-Moety, Ezzat M.;El-Tarras, Mohamed F.;El-Zeany, Badr-Eldin A.;Kelani, Khadiga O.
    • Archives of Pharmacal Research
    • /
    • 제13권3호
    • /
    • pp.215-220
    • /
    • 1990
  • Two different, derivative spectrophotometric and gas-liquid chromatographic, procedures for direct quantitation of caffeine and some commonly dispensed antihistaminics in bulk forms, in their laboratory prepared mmixtures and in dosage formulations, have been investigated. The limit, sensitivity reproducibility and accuracy of each method were studied for each individual drug substance and in some usual pharmaceutical formulations.

  • PDF

프리스트레스트 훰 부재의 시간 종속적 거동에 관한 민감도 해석 (Sensitivity analysis of time-dependent behaviors of PSC flexural members)

  • 김민주;김동기;김택중;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.119-124
    • /
    • 2001
  • A general procedure to implement the sensitivity analysis of PSC flexural members is proposed based on the analytical calculation of the gradients of stresses and strains with respect to the 21 design variables in a closed format. The formulation covers the long term losses including concrete creep, shrinkage, and PS steel relaxation as well as load effects. The derived formulation is applied to the rectangular section PSC beam with prestressing and nonprestressing steels for the sensitivity analysis. The analytically calculated sensitivity results are compared with those numerically calculated.

  • PDF