• Title/Summary/Keyword: Analytical field analysis

Search Result 866, Processing Time 0.025 seconds

Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.469-488
    • /
    • 2019
  • We in this paper study nonlinear bending of a functionally graded porous nanobeam subjected to multiple physical load based on the nonlocal strain gradient theory. For more reasonable analysis of nanobeams made of porous functionally graded magneto-thermo-electro-elastic materials (PFGMTEEMs), both constituent materials and the porosity appear gradient distribution in the present expression of effective material properties, which is much more suitable to the actual compared with the conventional expression of effective material properties. Besides the displacement function regarding physical neutral surface is introduced to analyze mechanical behaviors of beams made of FGMs. Then we derive nonlinear governing equations of PFGMTEEMs beams using the principle of Hamilton. To obtain analytical solutions, a two-step perturbation method is developed in nonuniform electric field and magnetic field, and then we use it to solve nonlinear equations. Finally, the analytical solutions are utilized to perform a parametric analysis, where the effect of various physical parameters on static bending deformation of nanobeams are studied in detail, such as the nonlocal parameter, strain gradient parameter, the ratio of nonlocal parameter to strain gradient parameter, porosity volume fraction, material volume fraction index, temperature, initial magnetic potentials and external electric potentials.

A Study on the Behavior of Steel Curved Girder Bridge during Construction (곡선 강박스 거더교의 가설중 거동 파악 연구)

  • Gil, Heung Bae;Pae, Chang Kyu;Kang, Sang Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.511-518
    • /
    • 2005
  • The behavior of steel curved bridges is more complicated than straight bridges, thus the analysis, design and construction process of curved bridges require much more attention. In design of curved bridges, the grillage analysis using general structural analysis program or special program is mainly used. Comparative study in coherence between these analytical results and actual behavior of curved bridges has been rarely conducted. To study the behaviour of curved bridges and verify the current design method, field measurements and analyses using general structural analysis program and 3-D refined analysis program were carried out for simple and continuous bridges in this study. The study focused on the behavior of curved steel bridges during construction. Measured and analytical results had quantitative difference mutually, but there were qualitatively similar. Stress variations in transverse direction of flange were observed and grillage analysis models yielded more conservative values than 3-D refined analysis models.

Analysis of Electrostatic Field and Potential Distributions in Conductor-Backed Coupled Coplanar Waveguide Using Conformal Mapping Method (등각사상방법을 이용한 도체로 보강된 결합 도파 선로의 정전기장과 전위 분포 해석)

  • Yoo, Tae-Hoon;Han, Ki-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.35-42
    • /
    • 2010
  • We use conformal mapping method to derive the analytical expressions for calculating electrostatic fields and electric potentials surrounding the conductor-backed coupled coplanar waveguide(CBCCPW) structure. Using the derived expressions, the electrostatic fields and potentials are computed at various points of the CBCCPW's geometry and the field and potential distributions are analyzed. The proposed method provides a faster and simpler calculation of the field distributions than the full-wave analysis method because no iterations are required. This method can be widely applied to the analysis of microwave integrated circuits using coupled line, such as coupler, filter, and microstrip antenna.

Detent Force Analysis in Permanent Magnet Linear Synchronous Motor Considering Longitudinal End Effects

  • Li, Liyi;Ma, Mingna;Chan, C.C.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • This paper presents a uniform analytical model by energy method and Fourier series expansion to analyze detent force in uneven magnetic field for permanent magnet linear synchronous motor (PMLSM). The model reveals that detent force in long-primary type is mainly influenced by non-ideal distribution of permanent magnet magnetic motive force, while nounified air-gap permeance makes a great impact on detent force of short-primary type. Hence, magnetic field similarity of motor design techniques referring rotary counterpart are adopted. For long-primary type novel method of splitting edge magnets is proposed to reduce end effects force, and optimal widths of edge tooth in short-primary type also verify the effectiveness of magnetic field similarity. The experimental results validate finite element analysis results.

Estimation of Output Voltage and Magnetic Flux Density for a Wireless Charging System with Different Magnetic Core Properties

  • Park, Ji Hea;Kim, Sang Woo
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • The design model and key parameters of the material design for the control of induced magnetic flux at the near-field and efficient power transfer in a modified wireless power transfer (WPT) system with a large air gap of wireless electric vehicles were investigated through analytical simulations for magnetic vector and time-domain transient analysis. Higher saturation magnetic core with low core loss induced a stronger vertical magnetic field by the W-type primary coil in the WPT system with a gap of 20 cm at 20 kHz, which is shown from the vector potentials of the magnetic induction. The transient analysis shows that the higher magnetic fluxes through the pick-up cores lead to a linear increment of the alternating voltage with a sinusoidal waveform in the non-contact energy transfer system.

Design of Field Coil for High Temperature Superconducting motor considering Operating Current (운전전류를 고려한 고온초전도 모터용 계자코일의 설계)

  • 조영식;서무교;백승규;김석환;손명환;권영길;홍정표
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.315-317
    • /
    • 2002
  • The value of I$_{c}$(critical current) in HTS (High Temperature Superconducting) tape has a great influence on B(equation omitted) (magnetic field amplitude applied perpendicular to the tape surface). Therefore, I$_{c}$ of HTS magnet is determined by not only operating temperature but also the B(equation omitted). In shape design of field coil for the HTS motor, a method to reduce the B(equation omitted) and to determine operating current should be considered in order to optimal design. On the basis of the magnetic field analysis, this paper deals with various field coil shape to obtain operating current of HTS motor by using analytical method. And also this paper discusses the operating current of 100hp class HTS motor by using I$_{c}$-B(equation omitted) curve.curve.

  • PDF

Three-phase-lag model on a micropolar magneto-thermoelastic medium with voids

  • Alharbi, Amnah M.;Othman, Mohamed I.A.;Al-Autabi, Al-Anoud M. Kh.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.187-197
    • /
    • 2021
  • This paper harnesses a micropolar thermoelastic medium consisting of voids to scrutinize the impacts of a magnetic field on it. To assess the problem, the three-phase-lag model (3PHL) has been employed and the analytical expressions of various variables under consideration have been derived using normal model analysis. The paper presents a graphical illustration of the material's stress, temperature, and dimensionless displacement. It has also been ensured that the predictions associated with results by different theories are not neglected instead; they are used to carry out appropriate comparisons in scenarios where the magnetic field is present as well as absent. The numerical results indicate that the magnetic field and the phase-lag of heat flux play a vital role in determining the distribution of field quantities. Thus, the investigation helped derive various interesting cases.

Discrimination of biological and artificial nicotine in e-liquid

  • Hyoung-Joon Park;Heesung Moon;Min Kyoung Lee;Min Soo Kim;Seok Heo;Chang-Yong Yoon;Sunyoung Baek
    • Analytical Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.22-31
    • /
    • 2023
  • As the use of e-liquid cigarettes is rapidly increasing worldwide, it multiplies the potential risk undisclosed to the health of non- and smokers. To reduce the hazard, each country has its own set of regulations for controlling e-liquids. In Korea, the narrow definition of tobacco makes it difficult and have been steadily occurring tax evasion exploiting the difference in natural and artificial nicotine. Therefore, it is very important to distinguish source of nicotine for their regulation. To find biochemical discriminant markers, this study established analysis methods based on high-performance liquid chromatography coupled with diode array detector (HPLC-DAD) and high-performance liquid chromatography coupled with triple Quadrupole mass spectrometry (HPLC-MS/MS) for nicotine enantiomers and tobacco alkaloids targeted using the difference in pathways of nicotine biosynthesis and chemical synthesis. The method was validated by experimenting linearity (R2 > 0.999), recovery (80.99-108.41 %), accuracy (94.11-109.73 %) and precision (0.04-8.27 %). Then, the results for discrimination of the nicotine obtained from analysis of 65 commercial e-liquid products available in Korean market was evaluated. The method successfully applied to the e-liquids and one sample labelled 'synthetic nicotine' for tax exemption was found to contain a natural nicotine product. This method can be used to determine whether an e-liquid product uses natural or artificial nicotine and monitor non-taxable e-liquid products. The method is more scientific than the existing one, which relies only on field evidence.

Electromagnetic Field Analysis and Measurements of Cylindrical Linear Oscillatory Actuator using Transfer Relations Theorem (전자기 전달관계를 이용한 원통형 직선 왕복구동 액추에이터의 전자기 특성 해석 및 실험)

  • Jang, Seok-Myeong;Kim, Hyun-Kyu;Choi, Jang-Young;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.89-91
    • /
    • 2008
  • This paper deals with the thrust calculations and the measurements of a cylindrical Linear Oscillatory Actuator (LOA) sing Transfer Relations Theorem (TRT), namely, Melcher's methodology. Using transfer relations derived in terms of a magnetic vector potential and a two-dimensional (2-d) cylindrical coordinate system, this paper derives analytical solutions for the magnetic vector potential, magnetic fields due to Permanent Magnets (PMs) and stator winding currents and the thrust. The analytical results are validated by non-linear Finite Element (FE) analyses. In particular, test results such as thrust and back-emf measurements are given to confirm the analysis.

  • PDF

Analysis on Thrust Characteristics of Slotless Iron-Cored PMLSM According to PM Magnetization Patterns

  • Jang Seok-Myeong;You Dae-Joon;Lee Sung-Ho;Jang Won-Bum
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.27-33
    • /
    • 2005
  • The development of modern high-energy magnet materials has allowed the replacement of field coils in many different types of electromagnetic energy conversion machines. As well, the linear synchronous motor has recently been proposed for linear motion with high efficiency and thrust. Thus, this paper presents an analytical solution for the high thrust and cost reduction of the Iron-Cored Permanent Magnet Linear Synchronous Motor (PMLSM) considering magnetization arrays and geometry. Hence, the superior utilization points in each of the magnetization arrays are provided by the height ratio of the magnet/air-gap and magnet/winding coil, etc. In formulation, the space harmonic method in analytical solutions and the generalized 2-D tensor finite element analysis can be used to evaluate force components in magneto static devices including the magnetostrictive phenomenon.