• Title/Summary/Keyword: Analytical Tool

Search Result 657, Processing Time 0.021 seconds

The use of eccentric beam elements in the analysis of slab-on-girder bridges

  • Chan, Tommy H.T.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.85-102
    • /
    • 1999
  • With the advent of computer, the finite element method has become a most powerful numerical method for structural analysis. However, bridge designers are reluctant to use it in their designs because of its complex nature and its being time consuming in the preparation of the input data and analyzing the results. This paper describes the development of a computer based finite element model using the idea of eccentric beam elements for the analysis of slab-on-girder bridges. The proposed method is supported by a laboratory test using a reinforced concrete bridge model. Other bridge analytical schemes are also introduced and compared with the proposed method. The main aim of the comparison is to prove the effectiveness of the shell and eccentric beam modelling in the studies of lateral load distribution of slab-on-girder bridges. It is concluded that the proposed finite element method gives a closer to real idealization and its developed computer program, SHECAN, is also very simple to use. It is highly recommended to use it as an analytical tool for the design of slab-on-girder bridges.

Seismic Performance Evaluation of Externally Reinforced Panel Water Tank Using Shaking Table Tests (진동대 실험을 통한 외부보강형 판넬조립식 물탱크의 내진성능평가)

  • Park, Se-Jun;Won, Seong-Hwan;Choi, Moon-Seock;Kim, Sang-Hyo;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.151-157
    • /
    • 2013
  • In this study, an externally reinforced structural system for SMC(Sheet Molding Compound) panel water tank, designed according to the Japanese design code, is experimented to evaluate its seismic performance. The test tank is 3m long, 2m wide and 3m high, considering the capacity and size of the shaking table. The measured hydrodynamic pressures are found to be approximately 70% of the Japanese design code values. It may be partially due to the convex shape effect of the unit panels. The analytical results of externally reinforced system based on the measured dynamic water pressures are found in good agreement with the test results. If the design hydrodynamic pressures are estimated properly, the proposed analytical model for the externally reinforced water tank becomes a useful design tool and the Japanese design code is found to provide a safe design for the external frames of SMC panel water tank.

Characteristic analysis on train-induced vibration responses of rigid-frame RC viaducts

  • Sun, Liangming;He, Xingwen;Hayashikawa, Toshiro;Xie, Weiping
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1015-1035
    • /
    • 2015
  • A three-dimensional (3D) numerical analysis for the train-bridge interaction (TBI) system is actively developed in this study in order to investigate the vibration characteristics of rigid-frame reinforced concrete (RC) viaducts in both vertical and lateral directions respectively induced by running high-speed trains. An analytical model of the TBI system is established, in which the high-speed train is described by multi-DOFs vibration system and the rigid-frame RC viaduct is modeled with 3D beam elements. The simulated track irregularities are taken as system excitations. The numerical analytical algorithm is established based on the coupled vibration equations of the TBI system and verified through the detailed comparative study between the computation and testing. The vibration responses of the viaducts such as accelerations, displacements, reaction forces of pier bottoms as well as their amplitudes with train speeds are calculated in detail for both vertical and lateral directions, respectively. The frequency characteristics are further clarified through Fourier spectral analysis and 1/3 octave band spectral analysis. This study is intended to provide not only a simulation approach and evaluation tool for the train-induced vibrations upon the rigid-frame RC viaducts, but also instructive information on the vibration mitigation of the high-speed railway.

A method for producing normalized total score of BSC measures (BSC 지표의 정규화된 Total Score 산출 방법)

  • Kim, Su-Yeon;Hwang, Hyun-Seok;Hong, Jong-Yi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.5
    • /
    • pp.163-172
    • /
    • 2007
  • ESC has been used as a tool for evaluating overall performance of firms. ESC focuses mainly on building a balanced viewpoint comprising perspectives and their metrics. It is, therefore, difficult to value overall strategic achievements of a company derived by consolidating various perspectives and metrics. Because of the absence of a method for consolidating ESC metrics and computing total score based on these metrics, it is difficult to evaluate whole strategic performance and find core obstacle parts of performance. In this paper, we suggest a method of normalizing a numerical value of metrics with different units, and calculating the total score of ESC metrics. We conduct a case study of evaluating the effectiveness of CRM to illustrate the applicability and feasibility of the suggested method.

  • PDF

Advanced Characterization Techniques of Organic Matter in Aqueous Solutions (물 속 유기물의 고도 특성 분석)

  • Shon, Ho Kyong;Vigneswaran, Saravanamuthu;Kandasamy, Jaya;Kim, Jong Beom;Kim, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • Water is the most precious resource to human being, but it is polluted by different organic compounds. Organic matter (OM) in aqeous solutions is one of the important parameters of concern for human and environmental impact, and thus, it is essential to better characterize specifically targeted organic matter in aggregated and individual level of concentrations. This review presents different analytical tools and protocols to investigate detailed properties and characterization. Physical, chemical and biological aspects of OM are envisaged in terms of traditional and advanced measurement methods.

Development of official assay method for loperamide hydrochloride capsules by HPLC

  • Le, Thi-Anh-Tuyet;Nguyen, Bao-Tan;Kim, Min-Ho;Kim, Bit;Kim, Hyun-Soo;Jeong, Seung-Won;Kang, Jong-Seong;Na, Dong-Hee;Chun, In-Koo;Kim, Kyeong Ho
    • Analytical Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.252-261
    • /
    • 2020
  • Currently, the potentiometric titration and the high pressure liquid chromatography (HPLC) method were utilized in Korean Pharmacopoeia XII (KP XII) as well as other pharmacopoeias (USP, EP, BP) for determination of loperamide hydrochloride in raw materials and capsules, respectively. The research objective is to overcome the remaining drawbacks from current methods such as solubility of mobile phase (KP XII), less scientific approach (USP 43) or using paired-ion chromatography reagent which shows some limitations (BP2017 and other formulation monographs). The proposed method was optimized by Design of Experiment (DoE) tool to obtain the satisfied method for determination of loperamide hydrochloride. The optimal condition was performed on the common C18 column (150 mm × 4.6 mm; 5 ㎛) using isocratic elution with the mobile phase containing 40 mM of potassium phosphate monobasic (pH 3.0) and acetonitrile (56:44), at a flow rate of 0.7 mL/min. The optimized method was validated and met the requirements of the International Conference on Harmonization. The developed method was applied to determine loperamide hydrochloride in capsules and can be used to update the current monograph in KP XII.

A new methodology of the development of seismic fragility curves

  • Lee, Young-Joo;Moon, Do-Soo
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.847-867
    • /
    • 2014
  • There are continuous efforts to mitigate structural losses from earthquakes and manage risk through seismic risk assessment; seismic fragility curves are widely accepted as an essential tool of such efforts. Seismic fragility curves can be classified into four groups based on how they are derived: empirical, judgmental, analytical, and hybrid. Analytical fragility curves are the most widely used and can be further categorized into two subgroups, depending on whether an analytical function or simulation method is used. Although both methods have shown decent performances for many seismic fragility problems, they often oversimplify the given problems in reliability or structural analyses owing to their built-in assumptions. In this paper, a new method is proposed for the development of seismic fragility curves. Integration with sophisticated software packages for reliability analysis (FERUM) and structural analysis (ZEUS-NL) allows the new method to obtain more accurate seismic fragility curves for less computational cost. Because the proposed method performs reliability analysis using the first-order reliability method, it provides component probabilities as well as useful byproducts and allows further fragility analysis at the system level. The new method was applied to a numerical example of a 2D frame structure, and the results were compared with those by Monte Carlo simulation. The method was found to generate seismic fragility curves more accurately and efficiently. Also, the effect of system reliability analysis on the development of seismic fragility curves was investigated using the given numerical example and its necessity was discussed.

Design and Implementation of Data Access Control Mechanism based on OLAP (OLAP 상에서 데이터 접근 제어 메커니즘 설계 및 구현)

  • Min, Byoung-Kuk;Choi, Ok-Kyung;Kim, Kang-Seok;Hong, Man-Pyo;Yeh, Hong-Jin
    • The KIPS Transactions:PartC
    • /
    • v.19C no.2
    • /
    • pp.91-98
    • /
    • 2012
  • OLAP(On-Line Analytical Processing) is a tool to satisfy the requirements of managing overflowing data analysis. OLAP can provide an interactive analytical processing environment to every end-user. Security policy is necessary to secure sensitive data of organization according to users direct access database. But earlier studies only handled the subject in its functional aspects such as MDX(Multidimensional Expressions) and XMLA(XML for Analysis). This research work is purported for solving such problems by designing and implementing an efficient data access control mechanism for the information security on OLAP. Experimental evaluation result is proposed and its efficiency and accuracy are verified through it.

Estimation of the load-deformation responses of flanged reinforced concrete shear walls

  • Wang, Bin;Shi, Qing-Xuan;Cai, Wen-Zhe;Peng, YI-Gong
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • As limited well-documented experimental data are available for assessing the attributes of different deformation components of flanged walls, few appropriate models have been established for predicting the inelastic responses of flanged walls, especially those of asymmetrical flanged walls. This study presents the experimental results for three large-scale T-shaped reinforced concrete walls and examines the variations in the flexural, shear, and sliding components of deformation with the total deformation over the entire loading process. Based on the observed deformation behavior, a simple model based on moment-curvature analysis is established to estimate flexural deformations, in which the changes in plastic hinge length are considered and the deformations due to strain penetration are modeled individually. Based on the similar gross shapes of the curvature and shear strain distributions over the wall height, a proportional relationship is established between shear displacement and flexural rotation. By integrating the deformations due to flexure, shear, and strain penetration, a new load-deformation analytical model is proposed for flexure-dominant flanged walls. The proposed model provides engineers with a simple, accurate modeling tool appropriate for routine design work that can be applied to flexural walls with arbitrary sections and is capable of determining displacements at any position over the wall height. By further simplifying the analytical model, a simple procedure for estimating the ultimate displacement capacity of flanged walls is proposed, which will be valuable for performance-based seismic designs and seismic capacity evaluations.

Novel analysis procedure for red ginseng polysaccharides by matrix-assisted laser desorption/ionization time-of-flight/time-offlight mass spectrometry

  • Jin, Ye Rin;Oh, Myung Jin;Yuk, Heung Joo;An, Hyun Joo;Kim, Dong Seon
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.539-545
    • /
    • 2021
  • Background: Red ginseng polysaccharides (RGPs) have been acknowledged for their outstanding immunomodulation and anti-tumor activities. However, their studies are still limited by the complexity of their structural features, the absence of purification and enrichment methods, and the rarity of the analytical instruments that apply to the analysis of such macromolecules. Thus, this study is an attempt to establish a new mass spectrometry (MS)-based analysis procedure for RGPs. Methods: Saponin pre-excluded powder of RG (RG-SPEP, 10 mg) was treated with 200 µL of distilled water and centrifuged for 5 h at 1000 rpm and 85 ℃. Ethanol-based precipitation and centrifugation were applied to obtain RGPs from the heated extracts. Further, endo-carbohydrase treatments were performed to produce specific saccharide fragments. Solid-phase extraction (SPE) processes were implemented to purify and enrich the enzyme-treated RGPs, while matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) MS was employed for the partial structural analysis of the obtained RGPs. Results: Utilizing cellulase, porous graphitized carbon (PGC), hydrophilic interaction chromatography (HILIC), and MALDI-TOF/TOF MS, the neutral and acidic RGPs were qualitatively analyzed. Hexn and Hexn-18 (cellulose analogs) were determined to be novel neutral RGPs. Additionally, the [Unknown + Hexn] species were also determined as new acidic RGPs. Furthermore, HexAn (H) was determined as another form of the acidic RGPs. Conclusion: Compared to the previous methods of analysis, these unprecedented applications of HILIC-SPE and MALDI-TOF/TOF MS to analyze RGPs proved to be fairly effective for fractionating and detecting neutral and acidic components. This new procedure exhibits great potential as a specific tool for searching and determining various polysaccharides in many herbal medicines.