• Title/Summary/Keyword: Analytical Techniques

Search Result 939, Processing Time 0.021 seconds

Improvement of the cyclic response of RC columns with inadequate lap splices-Experimental and analytical investigation

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • The overall seismic performance of existing pre 1960-70s reinforced concrete (RC) structures is significantly affected by the inadequate length of columns' lap-spliced reinforcement. Due to this crucial structural deficiency, the cyclic response is dominated by premature bond - slip failure, strength and stiffness degradation, poor energy dissipation capacity and low ductility. Recent earthquakes worldwide highlighted the importance of improving the load transfer mechanism between lap-spliced bars, while it was clearly demonstrated that the failure of lap splices may result in a devastating effect on structural integrity. Extensive experimental and analytical research was carried out herein, to evaluate the effectiveness and reliability of strengthening techniques applied to RC columns with lap-spliced reinforcement and also accurately predict the columns' response during an earthquake. Ten large scale cantilever column subassemblages, representative of columns found in existing pre 1970s RC structures, were constructed and strengthened by steel or RC jacketing. The enhanced specimens were imposed to earthquake-type loading and their lateral response was evaluated with respect to the hysteresis of two original and two control subassemblages. The main variables examined were the lap splice length, the steel jacket width and the amount of additional confinement offered by the jackets. Moreover, an analytical formulation proposed by Tsonos (2007a, 2019) was modified appropriately and applied to the lap splice region, to calculate shear stress developed in the concrete and predict if yielding of reinforcement is achieved. The accuracy of the analytical method was checked against experimental results from both the literature and the experimental work included herein.

Analytical behavior of longitudinal face dowels based on an innovative interpretation of the ground response curve method

  • Rahimpour, Nima;Omran, Morteza MohammadAlinejad;Moghaddam, Amir Bazrafshan
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.363-372
    • /
    • 2022
  • One of the most frequent issues in tunnel excavation is the collapse of rock blocks and the dropping of rock fragments from the tunnel face. The tunnel face can be reinforced using a number of techniques. One of the most popular and affordable solutions is the use of face longitudinal dowels, which has benefits including high strength, flexibility, and ease of cutting. In order to examine the reinforced face, this work shows the longitudinal deformation profile and ground response curve for a tunnel face. This approach is based on assumptions made during the analysis phase of problem solving. By knowing the tunnel face response and dowel behavior, the interaction of two elements can be solved. The rock element equation derived from the rock bolt method is combined with the dowel differential equation to solve the reinforced ground response curve (GRC). With a straightforward and accurate analytical equation, the new differential equation produces the reinforced displacement of the tunnel face at each stage of excavation. With simple equations and a less involved computational process, this approach offers quick and accurate solutions. The FLAC3D simulation has been compared with the suggested analytical approach. A logical error is apparent from the discrepancies between the two solutions. Each component of the equation's effect has also been described.

The Study for Identification of waterborne Spilled Oil by Fast Gas Chromatography (Fast GC를 이용한 해상유출유 감식ㆍ분석 기법 연구)

  • Chung J. W.;Lee W.S.;Yoon J. Y.;Kim H. G.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.122-130
    • /
    • 2004
  • Crude oil is complex mixture of thousands of different organic compound formed from a variety of organic materials that are chemically converted under differing geological conditions over long periods of time. Also oil composition varies according to crude source, refining, processing, handling and storage. The oil fingerprint method is application of specific knowledge of petrochemicals and use of sophisticated analytical equipment and techniques to identify the source(s) of oil pollution. KNMPA currently utilizes three primary analytical techniques: Gas Chromatography (GC), Fluorescence Spectroscopy(FL) and Infrared Spectroscopy(IR). Of all these techniques, GC technique are most widely used. Gas Chromatography is used as a primary analytical method because high reliableness, high separating efficiency and repeatability, but it is timeconsumable. The study results of identification of waterborne spilled oil by Fast Gas Chromatograph method showed that analytical time is cut down to 30minutes in comparison with packed column method and chromatograms represent high resolution and high repeatability.

  • PDF

An analytical technique for estimation of seismic displacements in reinforced slopes based on horizontal slices method (HSM)

  • Ghanbari, Ali;Khalilpasha, Abbas;Sabermahani, Mohsen;Heydari, Babak
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.143-164
    • /
    • 2013
  • Calculation of seismic displacements in reinforced slopes plays a crucial role in appropriate design of these structures however current analytical methods result indifferent values for permanent displacements of the slope. In this paper, based on limit equilibrium and using the horizontal slices method, a new formulation has been proposed for estimating the seismic displacements of a reinforced slope under earthquake records. In this method, failure wedge is divided into a number of horizontal slices. Assuming linear variations for tensile forces of reinforcements along the height of the slope, the coefficient of yield acceleration has been estimated. The simplicity of calculations and taking into account the frequency content of input triggers are among the advantages of the present formulation. Comparison of the results shows that the yield acceleration calculated by the suggested method is very close to the values resulted from other techniques. On the other hand, while there is a significant difference between permanent displacements, the values obtained from the suggested method place somehow between those calculated by the other techniques.

Analytical fault tolerant navigation system for an aerospace launch vehicle using sliding mode observer

  • Hasani, Mahdi;Roshanian, Jafar;Khoshnooda, A. Majid
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.53-64
    • /
    • 2017
  • Aerospace Launch Vehicles (ALV) are generally designed with high reliability to operate in complete security through fault avoidance practices. However, in spite of such precaution, fault occurring is inevitable. Hence, there is a requirement for on-board fault recovery without significant degradation in the ALV performance. The present study develops an advanced fault recovery strategy to improve the reliability of an Aerospace Launch Vehicle (ALV) navigation system. The proposed strategy contains fault detection features and can reconfigure the system against common faults in the ALV navigation system. For this purpose, fault recovery system is constructed to detect and reconfigure normal navigation faults based on the sliding mode observer (SMO) theory. In the face of pitch channel sensor failure, the original gyro faults are reconstructed using SMO theory and by correcting the faulty measurement, the pitch-rate gyroscope output is constructed to provide fault tolerant navigation solution. The novel aspect of the paper is employing SMO as an online tuning of analytical fault recovery solution against unforeseen variations due to its hardware/software property. In this regard, a nonlinear model of the ALV is simulated using specific navigation failures and the results verified the feasibility of the proposed system. Simulation results and sensitivity analysis show that the proposed techniques can produce more effective estimation results than those of the previous techniques, against sensor failures.

Development of Effective Analytical Signal Models for Functional Microwave Imaging

  • Baang, Sung-Keun;Kim, Jong-Dae;Lee, Yong-Up;Park, Chan-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.471-476
    • /
    • 2007
  • Various active microwave imaging techniques have been developed for cancer detection for past several decades. Both the microwave tomography and the UWB radar techniques, constituting functional microwave imaging systems, use the electrical property contrast between normal tissues and malignancies to detect the latter in an early development stage. Even though promising simulation results have been reported, the understanding of the functional microwave imaging diagnostics has been relied heavily on the complicated numerical results. We present a computationally efficient and physically instructive analytical electromagnetic wave channel models developed for functional microwave imaging system in order to detect especially the breast tumors as early as possible. The channel model covers the propagation factors that have been examined in the previous 2-D models, such as the radial spreading, path loss, partial reflection and transmission of the backscattered electromagnetic waves from the tumor cell. The effects of the system noise and the noise from the inhomogeneity of the tissue to the reconstruction algorithm are modeled as well. The characteristics of the reconstructed images of the tumor using the proposed model are compared with those from the confocal microwave imaging.

Modeling of a Multi-Leaf Spring for Dynamic Characteristics Analysis of a Large Truck (대형트럭 동특성 해석을 위한 다판 스프링의 모델링)

  • Moon Il Dong;Oh Seok Hyung;Oh Chae Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.147-153
    • /
    • 2004
  • This paper presents an analytical modeling technique fer representing a hysteretic behavior of a multi-leaf spring used for a large truck. It divides a nonlinear hysteretic curve of the multi-leaf spring into four parts; loading part, unloading part and two transition parts. It provides conditions fur branching to a part of the curve corresponding to a current multi-leaf spring status. This paper also presents a computational modeling technique of the multi-leaf spring. It models the multi-leaf spring with three links and a shackle. It assumes those components as rigid bodies. The links are connected by rotational joints, and have rotational springs at the joints. The spring constants of the rotational springs are computed with a force from the analytical model of the hysteretic curve of the multi-leaf spring. Static and dynamic tests are performed to verify the reliability of the presented techniques. The tests are performed with various amplitudes and excitation frequencies. The hysteretic curves from the tests are compared with those from the simulations. Since th e presented techniques reproduce the hysteretic characteristic of the multi -leaf spring faithfully, they contribute on improving the reliability of the computational model of a large truck.

Statistical Evaluation of Smoke Analysis Technique through Asia Collaborative Study V.

  • Ra, Do-Young;Rhee, Moon-Soo;Kim, Yoon-Dong;Hwang, Keon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.108-114
    • /
    • 1998
  • This study was conducted to evaluate the techniques or analyzing tobacco smoke by statistical treatment method for the analytical data through Asia Collaborative Study V. In addition to five smoke components analysis, consisting of TPM, water, nicotine, NFDPM, and puff count of four cigarettes samples, statistical parameters such as mean, standard deviation, box-and-whisker plots, h plots, k plots, regression coefficients, reproducibility (R), and repeatability (r) were also calculated. Analysis of water content of cigarette smoke was the most difficult task, whereas puff count analysis was the easiest as well recognized by all laboratories. Analysis of nicotine and puff count accounted for both the lowest and the highest variation among four parameters. The water coefficients indicated more randomness or variation in the slops. The NFDPM data exhibited both types of deviations from linearity. Water content of sample D indicated the highest difference between two single results and between two interlaboratory test results. As a whole, KGTRI ranked higher in the analytical techniques for statistical evaluation of results when compared with the practices of 28 other laboratories.

  • PDF

Analytical Techniques for Measurement of Crosslink Densities of Rubber Vulcanizates

  • Son, Chae Eun;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • It is important to analyze crosslink densities of rubber articles because the physical properties are dependent on the crosslink densities. In this paper, analytical techniques for the measurement of crosslink densities of rubber vulcanizates are described. The most widely used method to measure the crosslink density is a swelling method combined with the Flory-Rehner equation. Application of the interaction parameter (${\chi}$) of rubber and swelling solvent is critical because the crosslink density is absolutely dependent on the ${\chi}$ value. Methods for obtaining ${\chi}$ employ not only solubility parameters of the polymer and swelling solvent but also inverse gas chromatography (IGC). The solubilities of rubbers can be obtained using micro differential scanning calorimetry (${\mu}DSC$), intrinsic viscosity measurement, and UV-visible spectroscopy. Nuclear magnetic resonance (NMR) spectroscopy has been also used for the measurement of the crosslink density using the $T_2$ relaxation time, which is determined by spin-spin relaxation in solid-state NMR. For sulfur-cured rubber vulcanizates, crosslink densities according to the crosslink types of mono-, di-, and polysulfides are measured by treating the rubber samples with a chemical probe composed of thiol and amine compounds. Measurement methods of physical crosslinking by filler, crystallization, and ionic bonding have also been introduced.

Fault Detection of Aircraft Turbofan Engine System Using a Fault Detection Filter (고장 검출 필터를 사용한 항공기 터보팬 엔진 시스템의 고장 검출)

  • Bae, Junhyung
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.330-336
    • /
    • 2021
  • A typical way to reduce the number of hardware redundancy configurations is to implement them as analytical techniques for detecting, identifying and accepting failures with micro-controller. In this paper, one of the analytical techniques, the fault detection filter, is applied to aircraft turbofan engine system. The fault detection filter is a special type of observer that has the advantage of being able to determine the location of failures by maintaining a constant direction in the output space in the event of a particular failure. We present a single input/output dynamic system modeling of air turbine system in turbofan engine, a fault detection filter design, and simulation results applying it. Simulation results show that fault detection can be effectively applied as a sensitivity effect to the directionality of the detection filter.