• Title/Summary/Keyword: Analytical Techniques

Search Result 944, Processing Time 0.033 seconds

Interface friction in the service load assessment of slab-on-girder bridge beams

  • Seracino, R.;Kerby-Eaton, S.E.;Oehlers, D.J.
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.259-269
    • /
    • 2005
  • Many slab-on-girder bridges around the world are being assessed because they are approaching the end of their anticipated design lives or codes are permitting higher allowable loads. Current analytical techniques assume that the concrete and steel components act independently, typically requiring full-scale load testing to more accurately predict the remaining strength or endurance of the structure. However, many of the load tests carried out on these types of bridges would be unnecessary if the degree of interaction resulting from friction at the steel-concrete interface could be adequately modeled. Experimental testing confirmed that interface friction has a negligible effect on the flexural capacity of a slab-on-girder beam however, it also showed that interface friction is significant under serviceability loading. This has led to the development of an improved analytical technique which is presented in this paper and referred to as the slab-on-girder mixed analysis service load assessment approach.

The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory

  • Alzahrani, Faris S.;Abbas, Ibrahim A.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.369-386
    • /
    • 2016
  • In this work, the two-dimensional generalized magneto-thermoelastic problem of a fiber-reinforced anisotropic material is investigated under Green and Naghdi theory of type III. The solution will be obtained for a certain model when the half space subjected to ramp-type heating and traction free surface. Laplace and exponential Fourier transform techniques are used to obtain the analytical solutions in the transformed domain by the eigenvalue approach. The inverses of Fourier transforms are obtained analytically. The results have been verified numerically and are represented graphically. Comparisons are made with the results predicted by the presence and absence of reinforcement and magnetic field.

Adjoint Variable Method combined with Complex Variable for Structural Design Sensitivity (보조변수법과 복소변수를 연동한 설계 민감도 해석 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.418-423
    • /
    • 2008
  • Among various sensitivity evaluation techniques, semi-analytical method is quite popular since this method is more advantageous than analytical method and global finite difference method. However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified for individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, the adjoint variable method combined with complex variable is proposed to obtain the shape and size sensitivity for structural optimization. The complex variable can present accurate results regardless of the perturbation size as well as easy to be implemented. Through a few numerical examples of the static problem for the structural sensitivity, the efficiency and reliability of the adjoint variable method combined with complex variable is demonstrated.

  • PDF

Review of Stormwater Quality, Quantity and Treatment Methods Part 1: Stormwater Quantity Modelling

  • Aryal, Rupak;Kandasamy, J.;Vigneswaran, S.;Naidu, R.;Lee, S.H.
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • A review of stormwater quantity and quality in the urban environment is presented. The review is presented in three parts. The first part reviews the mathematical methods for stormwater quantity and has been undertaken by examining a number of stormwater models that are in current use. The important feature of models, their applications, and management has been discussed. Different types of stormwater management models are presented in the literatures. Generally, all the models are simplified as conceptual or empirical depending on whether the model is based on physical laws or not. In both cases if any of the variables in the model are regarded as random variables having a probability distribution, then the model is stochastic model. Otherwise the model is deterministic (based on process descriptions). The analytical techniques are presented in this paper.

Mechanism synthesis of Planar Four-bar Linkage for rigid body guidance by bushing elements (부싱 요소를 이용한 평면 4 절 기구의 강체 유도 기구 합성)

  • Yoo, Hong Hee;Hong, Jung Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.464-466
    • /
    • 2014
  • The mechanism synthesis methods, graphical, analytical and computer-aided technique have been proposed for selecting and scaling mechanical system. According to developing computation tools, mechanism could be synthesized much faster and more correct than previous analytical ways by improved techniques. In this paper, the improved synthesis method is proposed to solve body guidance synthesis problem. To perform the mechanism synthesis for body guidance, a planar linkage is modeled as a set of free three bushings located in design space. The values of bushing stiffness and x, y position of bushings yielding a desired functional requirement related to input motion are found by using an optimization technique.

  • PDF

Electrochemical Study of Poly(aniline N-alkylsulfonate)s

  • Kim, Eunkyoung;Rhee, Suh Bong
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.631-636
    • /
    • 1995
  • Electrochemical properties of self-dopable poly(aniline N-butylsulfonate)s in various acidic medium were investigated by spectroelectrochemical techniques. Cyclic voltammetric study showed more than two reversible process of one electron transfer, the potential and peak intensity of which were dependent on the acid concentration and dopant ion. Spectroscopic study at different oxidation level indicated that the electrochromic switching of the poly(aniline N-alkylsulfonate)s film involves structural changes from benzenoid ring to quinoid ring. Spectrocyclic voltammetry together with impedance spectra of the PANBUS film in 0.1 M $LiClO_4$ solution of acetonitrile containing 0.46 M of perchloric acid showed two types of highly conductive states at the intermediate oxidation levels, which can be related to the metallic polaron states doped by two different process.

  • PDF

Automated FEA Simulation of Micro Motor (마이크로 모터의 자동화된 FEA 시뮬레이션)

  • Lee Joon-Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

Design and Optimization of TG-CVI Heater (TG-CVI용 히터 형상설계 및 최적화)

  • 이성호;홍성석;구형회
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.244-249
    • /
    • 2000
  • Thermal gradient chemical vapor infiltration (TG-CVI) process, which is one of the CVI techniques to densify a porous fiber preform, requires for a heater to have uniform surface temperature distribution. Thus, it is essential to design the shape of the heater and to predict the temperature distribution when the heater has a profile which is not a simple cylinder. In this study, an analytical method has been used to design the inner profile of a conical heater showing uniform temperature distribution, if its outer shape is specified. Temperature distribution on the heater surface has been calculated with the finite difference method and compared with the experimental results. When a heater had a combined profile with a large cone and a small cylinder, temperature was higher in the cylindrical part. To reduce the temperature difference between these areas, a hole-machining method has been proposed including other possible ones. A shape design and optimization program has been made to improve the temperature uniformity of the TG-CVI heater better than that designed with the analytical method.

  • PDF

Polynomial modeling of confined compressive strength and strain of circular concrete columns

  • Tsai, Hsing-Chih
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.603-620
    • /
    • 2013
  • This paper improves genetic programming (GP) and weight genetic programming (WGP) and proposes soft-computing polynomials (SCP) for accurate prediction and visible polynomials. The proposed genetic programming system (GPS) comprises GP, WGP and SCP. To represent confined compressive strength and strain of circular concrete columns in meaningful representations, this paper conducts sensitivity analysis and applies pruning techniques. Analytical results demonstrate that all proposed models perform well in achieving good accuracy and visible formulas; notably, SCP can model problems in polynomial forms. Finally, concrete compressive strength and lateral steel ratio are identified as important to both confined compressive strength and strain of circular concrete columns. By using the suggested formulas, calculations are more accurate than those of analytical models. Moreover, a formula is applied for confined compressive strength based on current data and achieves accuracy comparable to that of neural networks.

Recent Advances of MALDI-Mass Spectrometry Imaging in Cancer Research

  • Jung, Joohee
    • Mass Spectrometry Letters
    • /
    • v.10 no.3
    • /
    • pp.71-78
    • /
    • 2019
  • For several decades, cancer has been the primary cause of mortality worldwide. New diagnosis and regimens have been developed to improve the chemotherapeutic efficacy and the quality of life of the patients. However, cancer tissues are complex and difficult to assess. Understanding the various properties of the tumor and its environment is crucial for cancer and pharmaceutical research. Several analytical techniques have been providing new insights into cancer research. Recently, matrix-assisted laser desorption ionization (MALDI)-mass spectrometry imaging (MSI), an advanced analytical technique, has been applied to translational research. Proteomic and lipidomic profiling obtained by MALDI-MSI has been critical for biomarker discovery and for monitoring heterogenous tumor tissues. In this review, we discuss technical approaches, benefits and recent applications of MALDI-MSI as a valuable tool in cancer research, namely for diagnosis, therapy, prognosis.