• Title/Summary/Keyword: Analytical Prediction

Search Result 875, Processing Time 0.037 seconds

NUMERICAL INVESTIGATION ON CAPTURE OF NANOPARTICLES IN ELECTROSTATIC PRECIPITATOR WITHOUT CORONA DISCHARGER (코로나 방전기가 없는 전기집진기의 나노입자 집진에 관한 수치해석)

  • Lee, J.W.;Jang, J.S.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.103-108
    • /
    • 2010
  • This article presents computational fluid dynamics (CFD) simulations of nanoparticle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program(CFD-ACE) including electrostatic theory and Lagrangian-based equation for nanoparticle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in nanoparticle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

  • PDF

Prediction of Radiated Noise from a Spur Gear System (스퍼 기어계의 방사소음 예측)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.334-339
    • /
    • 2000
  • In order to predict the noise of the spur gear system, a simplified model of spur system including the housing is studied. The spur gear is modeled as a single degree of freedom system. The shaft-housing system is modeled as a clamped circular plate connected with a beam. The moment components of the beam excited by the spur gear mesh force are considered in the calculation of plate vibration and radiated noise. The out-of-displacements of the clamped circular plate due to the r-direction moment and ${\theta}$-direction moment are calculated. Radiated noise from the plate in the air is also calculated using Rayleigh integral. Using the numerical example, the numerical validation of the analytical procedure on the noise prediction are given.

  • PDF

A Study on Shear Strength Prediction of RC Columns Strengthened with FRP Sheets (섬유 쉬트로 보강된 철근콘크리트 기둥의 전단강도 예측에 관한 연구)

  • 변재한;권성준;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.896-901
    • /
    • 2003
  • This paper describes a model on shear strength of RC columns strengthened with FRP sheets. In this study, we propose a confined concrete strength model of RC columns confined by transverse reinforcement as well as FRP sheet by introducing corresponding effective confinement coefficient for each confined concrete area. Then, a shear strength model of the confined RC columns is proposed by lower and upper bound limit analysis which are based on the truss-arch model theory and shear band failure theory, respectively. Along with shear test data obtained from strengthened column specimens, the developed analytical models are verified. The comparison shows that the proposed model can be used effectively for the prediction of both ultimate strength and required amount of strengthening in retrofit design for RC columns.

  • PDF

Optimization of spring back in U-die bending process of sheet metal using ANN and ICA

  • Azqandi, Mojtaba Sheikhi;Nooredin, Navid;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.447-452
    • /
    • 2018
  • The controlling and prediction of spring back is one of the most important factors in sheet metal forming processes which require high dimensional precision. The relationship between effective parameters and spring back phenomenon is highly nonlinear and complicated. Moreover, the objective function is implicit with regard to the design variables. In this paper, first the influence of some effective factors on spring back in U-die bending process was studied through some experiments and then regarding the robustness of artificial neural network (ANN) approach in predicting objectives in mentioned kind of problems, ANN was used to estimate a prediction model of spring back. Eventually, the spring back angle was optimized using the Imperialist Competitive Algorithm (ICA). The results showed that the employment of ANN provides us with less complicated and time-consuming analytical calculations as well as good results with reasonable accuracy.

Flow Interaction of Sailing Drone using Numerical Method

  • Ngoc, Pham Minh;Choi, Min-Seon;Yang, Changjo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.230-232
    • /
    • 2019
  • There is an accelerating need for ocean sensing where autonomous vehicles can play a key role in assisting engineers, researcher and scientists with environmental monitoring and collecting oceanographic data. This paper is performed to develops an autonomous sailing drone to be used as a sensor carrying platform for autonomous data acquisition at Sea. From a sailing drone design viewpoint, it is important to establish reliable prediction methods for sailing drone's resistance. The required power for the propulsion unit depends on the ship resistance and speed. There are three solutions for the prediction of ship resistance as follow analytical methods, model tests in tanks and Computational Fluid Dynamics (CFD). The present paper aims at simulating sailing drone friction resistance using numerical method. The dynamic mesh motion is used to describe the sailing drone movement.

  • PDF

Prediction of Drying Shrinkage Behavior of Half PC Slab (Half PC slab의 건조수축 거동 예측)

  • Seo, Tae-Seok;Choi, Hoon-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.7-8
    • /
    • 2016
  • The use of half PC slab is increasing to shorten construction period. Because the drying shrinkage of topping concrete is restrained by PC slab, the tensile stress is generated at the topping concrete and the cracks can be occurred at the topping concrete due to drying shrinkage. Therefore, it is important to predict the tensile strain of half PC slab due to drying shrinkage to improve the quality of half PC slab. However, there is no studies on prediction of shrinkage behavior of half PC slab yet. Therefore, in this study, half PC slab was made, and the predictability of tensile strain generated at half PC slab due to drying shrinkage was investigated. The step by step method considering creep was used to estimate the tensile strain of half PC slab. In result, good agreement was obtained between the analytical and experimental values.

  • PDF

A Simple Path Prediction Scheme to Improve Handoff Efficiency in All-IP Wireless Networks

  • Zhu, Huamin;Kwak, Kyung-sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.781-785
    • /
    • 2004
  • Mobile IP maintains Internet connectivity while Mobile Hosts moving from one Internet attachment point to another. However, Mobile If is not appropriate for seamless mobility. Some micromobility protocols were proposed to complement Mobile IP by offering fast and seamless handoff control in limited geographical areas. In this paper, a new scheme, based on path prediction and resource reservation, is proposed to reduce the handoff latency by trying to eliminate the link setup time for fast handoff in all-IP wireless networks. Analytical results show that the proposed scheme offers shorter handoff delay and can improve the handoff efficiency.

A Fast Inter-Domain Network-based IP Mobility Scheme for Urban Areas

  • Taghizadeh, Alireza;Wan, Tat-Chee;Budiarto, Rahmat
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.645-655
    • /
    • 2014
  • Latency, an identified element of Internet protocol (IP) mobility protocol execution, can reduce handover performance in mobile networks. Although the performance can be improved by applying an effective network-based IP mobility scheme in place of the traditional host-based alternatives, the existing inter-domain extensions of network-based IP mobility continue to suffer from an extended handover latency. This paper proposes a new inter-domain network-based IP mobility scheme based on node movement prediction. The proposed scheme accelerates the handover by preparing the future domain of the mobile node in a proactive manner. Analytical and simulation-based evaluations confirm improved performance of the proposed scheme in terms of handover latency and packet loss compared with existing schemes.

Study on a Prediction of Noise Attenuation Performance of Automotive Mufflers (자동차 소음기의 소음성능 예측에 관한 연구)

  • 양기영;황원걸;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.389-394
    • /
    • 1994
  • The lattice filter formed transfer function has the advantage of computer simulation in the analysis of muffler. The transfer function is derived by using z-transformation for perforated elements in through-flow, cross-flow and reverse-flow type. A computer program for the prediction of the performance of automotive mufflers is developed using the transfer functions for uniform tube, open termination, expansion element, perforated elements, etc. The analytical results are verified by comparing with the experimental results for the transmission loss of a muffer. The effect of geometric configuration change of the muffler was invesigated in order to improve the performance of noise attenuation.

  • PDF

Analytical study on the Subchannel Pressure Loss for Turbulent Flow in Bare Rod Bundles (핵연료봉 주위에 형성되는 난류유동장에서 부수로 압력손실에 대한 해석적 연구)

  • ;Lee, Kye Bock
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2630-2636
    • /
    • 1995
  • A theoretically based prediction for the determination of the subchannel friction factor at low pitch to the rod diameter ratio (P/D < 1.2) in the bare rod bundle flow has been developed. The present model assumes the validity of the Law of Wall over the entire flow area. The algebraic form of the Law of the Wall is integrated over the entire flow area and the local friction velocity variation along the rod periphery is considered in this study. The present method is applied to the rod bundles with P/D < 1.2, and the prediction results show good agreement with the available experimental data.