• Title/Summary/Keyword: Analyte

Search Result 233, Processing Time 0.025 seconds

Responses of Chloramphenicol Immunosensor to Analyte Types

  • PARK , IN-SEON;KIM, DONG-KYUNG;KIM, NAM-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1157-1162
    • /
    • 2004
  • A well-holder type piezoelectric chloramphenicol (CAP) immunosensor which was prepared by binding an anti­CAP antibody to the chemisorbed monolayers of various thiol or sulfide compounds over the gold electrode surface of quartz crystals through a carboxyl-amine coupling procedure, using the activation with l-ethyl- 3-(3-dimethylarninopropyl)carbodiimide­HCl and N-hydroxysulfosuccinimide, was determined for its responses to CAP, CAP succinate, and water-soluble CAP. The reaction phase used in the well holder was 0.01 M phosphate buffer (pH 7.4), and the solvent for analyte dissolution varied according to the solubility of the individual analyte. The analyte detection which was indicated by a steady-state frequency shift was finished within 10 min, except for CAP dissolved in methanol. The responses of CAP succinate and water-soluble CAP in the reaction phase were very stable, while a minute fluctuation was found with CAP.

Quantitative analysis by the CARNAC procedure

  • Davies, Anthony M.C.;Fearn, Tom
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1124-1124
    • /
    • 2001
  • CARNAC is a procedure for obtaining quantitative analysis of a sample by comparison of the NIR spectra of the unknown sample with a database of a large number of samples with NIR spectral and compositional data. The method depends on the compression of the NIR database followed by a modification of the compressed data which emphasizes the required analyte. The method identifies a few very similar samples and the value of the required analyte is calculated from a weighed average of the analyte values for the selected similar samples. The method was originally described at Chambersburg IDRC in 1986 and in the Proceedings of the FT Conference of 1987. This contribution will describe recent work on utilising new methods for both compression and modification.

  • PDF

Hybrid Linear Analysis Based on the Net Analyte Signal in Spectral Response with Orthogonal Signal Correction

  • Park, Kwang-Su;Jun, Chi-Hyuck
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • Using the net analyte signal, hybrid linear analysis was proposed to predict chemical concentration. In this paper, we select a sample from training set and apply orthogonal signal correction to obtain an improved pseudo unit spectrum for hybrid least analysis. using the mean spectrum of a calibration training set, we first show the calibration by hybrid least analysis is effective to the prediction of not only chemical concentrations but also physical property variables. Then, a pseudo unit spectrum from a training set is also tested with and without orthogonal signal correction. We use two data sets, one including five chemical concentrations and the other including ten physical property variables, to compare the performance of partial least squares and modified hybrid least analysis calibration methods. The results show that the hybrid least analysis with a selected training spectrum instead of well-measured pure spectrum still gives good performances, which is a little better than partial least squares.

A Spatial-domain Fourier Transform Infrared Spectrometer: Application for Analyte Measurement in Cell Culture Media

  • Jung, Byung-Jo
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.151-156
    • /
    • 2005
  • A spatial-domain Fourier Transform (FT) infrared (IR) spectrometer coupled with a PtSi Schottky­barrier IR detector plane was developed in the spectral range of $2.0-2.5{\mu}m$ for noninvasive measurement of analyte concentrations in cell culture media during cell culture processing. A key optical component of the spectrometer is a Savart plate which is a birefringent polarizer generating coherent two rays for interfering. The spectral resolution of the spectrometer was determined as $71cm^{-1}$ (${\~}0.05{\mu}m$ at $2.5{\mu}m$). Clear IR fringe patterns were imaged on the IR detector plane. The feasibility of the spectrometer for our application was investigated by measuring absorbance spectra of glucose and fetal bovine serum (FBS) which are important compounds in cell culture media. Experiment results show that the spectral quality of glucose and FBS was comparable with the standard spectra acquired with a commercial FT-IR spectrometer, presenting the feasibility of the spectrometer to perform analyte measurement in cell culture media.

Enhanced Performance of Immunoassays with Affinity-Purified Analyte-Enzyme Conjugates as Signal Generators

  • 백세환
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.515-519
    • /
    • 1997
  • In a competitive enzyme immunoassay, the performance was tested with different analyte-enzyme conjugates (signal generators) in their binding constants to antibody. Analyte (progesterone)-enzyme (glucose oxidase; GO) conjugates were chemically synthesized and purified by using a gel column with an immobilized antibody to progesterone. In an elution range from the column, four peaks were detected by measuring total enzyme activities. Results from further analysis indicated that the first peak contained mainly unreacted GO while the next three peaks conjugated GO with progesterone. These three conjugate preparations were compared in dose-response curves along with the unpurified mixture. The purified conjugates showed higher detection capabilities than did the mixture. Especially, the preparation in the second peak next to the free GO peak improved the detection limit five times. This performance was comparable to that of a progesterone-horseradish peroxidase conjugate that has been identified to have one progesterone ligand.

Liquid Chromatographic Resolution of Both $\pi$-Acidic and $\pi$-Basic Analytes on a Chiral Stationary Phase Derived from (S)-Tyrosine

  • 현명호;민정식
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.12
    • /
    • pp.1117-1123
    • /
    • 1996
  • Chiral recognition models for resolving π-basic N-acyl-α-(1-naphthyl)alkylamines and π-acidic N-(3,5-dinitrobenzoyl)-α-amino alkyl esters on a (S)-tyrosine-derived chiral stationary phase (CSP) containing both π-basic and π-acidic interaction site have been proposed. In the models, the CSP was supposed to interact with the analytes through the π-π interaction between the 3,5-dinitrophenyl or the 3,5-dimethylphenyl group of the CSP and the 1-naphthyl or the 3,5-dinitrophenyl group of the analyte, and through the hydrogen bonding interaction between the appropriate N-H hydrogen of the CSP and the appropriate carbonyl oxygen of the analyte. In this instance, the alkyl substituent of the pertinent enantiomer of the analyte was found to intercalate between the adjacent strands of the bonded phase and consequently control the trends of the separation factors.

Sensing Technology for Rapid Detection of Phosphorus in Water: A Review

  • Islam, Sumaiya;Reza, Md Nasim;Jeong, Jin-Tae;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.138-144
    • /
    • 2016
  • Purpose: Phosphorus is an essential element for water quality control. Excessive amounts of phosphorus causes algal bloom in water, which leads to eutrophication and a decline in water quality. It is necessary to maintain the optimum amount of phosphorus present. During the last decades, various studies have been conducted to determine phosphorus content in water. In this study, we present a comprehensive overview of colorimetric, electrochemical, fluorescence, microfluidic, and remote sensing technologies for the measurement of phosphorus in water, along with their working principles and limitations. Results: The colorimetric techniques determine the concentration of phosphorus through the use of color-generating reagents. This is specific to a single chemical species and inexpensive to use. The electrochemical techniques operate by using a reaction of the analyte of interest to generate an electrical signal that is proportional to the sample analyte concentration. They show a good linear output, good repeatability, and a high detection capacity. The fluorescence technique is a kind of spectroscopic analysis method. The particles in the sample are excited by irradiation at a specific wavelength, emitting radiation of a different wavelength. It is possible to use this for quantitative and qualitative analysis of the target analyte. The microfluidic techniques incorporate several features to control chemical reactions in a micro device of low sample volume and reagent consumption. They are cheap and rapid methods for the detection of phosphorus in water. The remote sensing technique analyzes the sample for the target analyte using an optical technique, but without direct contact. It can cover a wider area than the other techniques mentioned in this review. Conclusion: It is concluded that the sensing technologies reviewed in this study are promising for rapid detection of phosphorus in water. The measurement range and sensitivity of the sensors have been greatly improved recently.

Analysis of a Photonic Crystal Fiber Sensor with Reuleaux Triangle

  • Bing, Pibin;Huang, Shichao;Guo, Xinyue;Zhang, Hongtao;Tan, Lian;Li, Zhongyang;Yao, Jianquan
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.199-203
    • /
    • 2019
  • The characteristics of a photonic crystal fiber sensor with reuleaux triangle are studied by using the finite element method. The wavelength sensitivity of the designed optical fiber sensor is related to the arc radius of the reuleaux triangle. Whether the core area is solid or liquid as well as the refractive index of the liquid core contributes to wavelength sensitivity. The simulation results show that larger arc radius leads to higher sensitivity. The sensitivity can be improved by introducing a liquid core, and higher wavelength sensitivity can be achieved with a lower refractive index liquid core. In addition, the specific channel plated with gold film is polished and then analyte is deposited on the film surface, in which case the position of the resonance peak is the same as that of the complete photonic crystal fiber with three analyte channels being filled with analyte. This means that filling process becomes convenient with equivalent performance of designed sensor. The maximum wavelength sensitivity of the sensor is 10200 nm/RIU and the resolution is $9.8{\times}10^{-6}RIU$.

Hydrophilic Interaction Liquid Chromatography (HILIC 분석법 개발을 위한 지능형 솔루션)

  • Matt James;Colin Pipe;Mark Fever;Jen Field;Seungho Chae
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.6.1-6.9
    • /
    • 2024
  • The document is a white paper on Hydrophilic Interaction Liquid Chromatography (HILIC) analysis method development. HILIC is a type of chromatography that uses an organic/aqueous mobile phase and a polar stationary phase. In HILIC, water is a strong solvent, and unlike in Reversed Phase Liquid Chromatography (RPLC), increasing the proportion of water in the mobile phase reduces the retention time of the analyte. The paper discusses when to consider HILIC analysis methods, the advantages of HILIC, and the challenges often encountered due to the lack of understanding of HILIC mechanisms compared to RPLC. It also provides a systematic flowchart for intelligent solutions for HILIC analysis method development, which includes a three-step approach for chromatography analysis method development. The first step involves gathering as much information as possible about the analyte (e.g., pKa, log P, log D). The second step involves analyzing the sample under different pH conditions using three HILIC columns in either isocratic or gradient mode to identify the suitable column/pH combination for the analyte. The third step involves optimizing the separation by investigating other parameters such as temperature and ionic strength, and assessing the robustness of the method. The paper emphasizes that the selection of the appropriate stationary/mobile phase combination, based on the differences between the HILIC stationary phases and the mobile phase pH, can provide high selectivity in the analysis. This step-by-step approach can help users develop an efficient analysis method.

  • PDF

Interpretation of Voltammetric Data by Neural Networks for Simultaneous Determination of Glucose, Fructose, and Ascorbic Acid

  • Susomrith, Paisit;Surareungchai, Werasak;Chaisawat, Ake
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.269-272
    • /
    • 2002
  • This work describes the use of neural networks (NNs) for interpreting voltammetric data, i.e., current-voltage spectra that obtained from the electrochemical reaction of analyte species at a gold electrode. Current-voltage spectra of glucose, fructose and ascorbic acid in mixtures obtained from dual-pulse staircase voltammetry (DPSV) was in the form of the mixed responses contain characteristics of the individual analytes approximately in proportion to their concentration. Extraction of individual analyte concentration from combined data was subsequently achieved using NNs. The combination of DPSV and NNs opens a possibility for simultaneous determination of mixtures of the species for fruit juices quality monitoring.

  • PDF