• Title/Summary/Keyword: Analysis system

Search Result 69,673, Processing Time 0.086 seconds

Timing Analysis of Distributed Real-time Control System using Response-time Analysis Tool (응답 시간 해석 도구를 이용한 실시간 분산 제어 시스템의 시간 해석)

  • Choi Jaebum;Shin Minsuk;Sunwoo Myoungho;Han Seogyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.194-203
    • /
    • 2005
  • The process of guaranteeing that a distributed real-time control system will meet its timing constraints, is referred to as schedulability analysis. However, schedulability analysis algorithm cannot be simply used to analyze the system because of complex calculations of algorithm. It is difficult for control engineer to understand the algorithm because it was developed in a software engineer's position. In this paper we introduce a Response-time Analysis Tool(RAT) which provides easy way far system designer to analyze the system by encapsulating calculation complexity. Based on the RAT, control engineer can verify whether all real-time tasks and messages in a system will be completed by their deadline in the system design phase.

Analysis of Risk Control Options for Blockage Treatment (Subsea X-mas Tree에서의 Blockage 처리 실패에 대한 위험도 저감 방안 분석)

  • Yoo, Won-Woo;Park, Min-Sun;Yang, Young-Soon
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.47-52
    • /
    • 2013
  • A subsea chemical injection system treats blockage problems in a subsea production system. It is important to treat problems quickly, because production delays cause fatal profit losses in a subsea production system. Therefore, the subsea industry requires a relatively higher reliability level for a production system compared to other industries. In this study, a subsea chemical injection system (linked to a control system) to inject chemicals into a subsea X-mas tree was analyzed. By using FSA (Formal Safety Assessment), the risk factors were defined and a quantitative risk analysis utilizing FTA (Fault Tree Analysis) and ETA (Event Tree Analysis) was performed. As a result, the effectiveness of a risk reduction option was evaluated.

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

A Dynamic Modeling & State Sensitivity Analysis of the Surface Mounting Device (Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석)

  • Jang, Jinhee;Han, Changsoo;Kim, Jungduck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.90-99
    • /
    • 1996
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformed which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backlash and friction. Therefore a dynamic modeling and state sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensit- ivity analysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensit- ivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design and faster operating based on the results of dynamic and state sensitivity.

  • PDF

A Study on the Development of Urine Analysis System using Strip and Evaluation of Experimental Result by means of Fuzzy Inference (스트립을 이용한 요분석시스템의 개발과 퍼지추론에 의한 검사결과 평가에 관한 연구)

  • Jun, K. R.;Lee, S. J.;Choi, B. C.;An, S. H.;Ha, K.;Kim, J. Y.;Kim, J. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.477-486
    • /
    • 1998
  • In this paper, we implemented the urine analysis system capable of measuring a qualitative and semi-quantitative and assay using strip. The analysis algorithm of urine analysis was adopted a fuzzy logic-based classifiers that was robust to external error factors such as temperature and electric power noises. The spectroscopic properties of 9 pads In a strip were studied to developing the urine analysis system was designed for robustnesss and stability. The urine analysis system was consisted of hardware and software. The hardware of the urine analysis system was based on one-chip microprocessor, and Its peripherals which composed of optic modulo, tray control, preamplifier, communication with PC, thermal printer and operating status indicator. The software of the urine analysis system was composed of system program and classification program. The system program did duty fort system control, data acquisition and data analysis. The classification program was composed of fuzzy inference engine and membership function generator. The membership function generator made triangular membership functions by statical method for quality control. Resulted data was transferred through serial cable to PC. The transferred data was arranged and saved be data acquisition program coded by C+ + language. The precision of urine analysis system and the stability of fuzzy classifier were evaluated by testing the standard urine samples. Experimental results showed a good stability states and a exact classification.

  • PDF

Development of Oil Flushing System with Microbubble Generator (마이크로 버블 발생장치와 결합된 오일 플러싱 장치 개발)

  • Hong, Sung-Ho;Lee, Kyung-Hee;Jeong, Nam-Wha
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.109-114
    • /
    • 2022
  • This paper reports the development of an oil flushing system combined with a microbubble generator. Oil flushing plays a crucial role in regulating the lubricant's performance during the lubricant replacement process. Moreover, harmful contaminants, such as sludge, wear particles, and rust, from piping systems or lubrication system can be removed by oil flushing. Oil flushing aims to increase the system's efficiency using a dedicated flushing oil, increasing of the supply pressure and generating a vortex. In addition, it helps the mechanical system or equipment achieve peak performance and reduces the potential for premature failure. However, the contaminant-removal applications of existing oil flushing system are limited. In this research, we aim to improve the performance of oil flushing system by incorporating a microbubble generator, which uses the venture effect to generate microbubbles and mixes them with lubricant. The microbubbles in the blended lubricant remove contaminants from the lubrication system more effectively. Structural mechanics and fluid dynamics are analyzed through fluid-structure interaction (FSI) analysis, and the numerical analysis results are used for the designing the system. The magnitude of the maximum stress is investigated based on the pressure results obtained by the CFD analysis; through the CFD analysis, the mixing ratio of air (bubble) and lubricant is evaluated using the volume of fluid (VOF) model according to the working conditions.

A study on the Dynamic Cost-Benefit Analysis with System Dynamics: Modeling and Economic Feasibility (시스템 다이내믹스 기법을 활용한 동태적 비용편익분석 모델구축과 사업성 평가에 관한 연구)

  • 최남희;전재호
    • Korean System Dynamics Review
    • /
    • v.3 no.2
    • /
    • pp.113-140
    • /
    • 2002
  • The cost-benefit analysis is a technique for assisting with decision about the use of society's scare resources. There exists no detailed assessment like cost-benefit analysis. But recently, many policy analysts criticized the merit of cost-benefit analysis. As it is, it can be said that partial or approximate estimates of benefit and cost may be more dangerous than helpful. The purpose of this study is to overcome the limit of traditional cost-benefit analysis. For this purpose, we use the system dynamics approach for setting up new cost-benefit analysis, which we named that ‘Dynamics Cost-Benefit Analysis'. The usefulness of ‘Dynamics Cost-Benefit Analysis' is as follows; finding structural causal relationship between cost factors and benefit factors, understanding the long-term behavior of systems economic feasibility. In this study, we apply 'Dynamic Cost-Benefit Analysis' to case that is construction investment of funeral house by local government sector.

  • PDF

A Study on the Activity Analysis Method using existing Saved Data -Activity Analysis for ABC Implementation (저장된 정보를 이용한 활동분석방법 연구 -ABC구축을 위한 활동분석)

  • 박주식;오지영;임총규;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.2
    • /
    • pp.145-154
    • /
    • 2001
  • This paper deals with Activity Analysis Method that is important procedure in Activity Based Costing System Implementation. There are many existing Activity Analysis Method, for example Interview, Questionnaire, Specialist Discussion and Work Measurement. Activity Analysis Data gained through this method has high reliability but this method bring about high cost. In case that certain company needs a strategic costing system, Activity Analysis Method which has high reliability will be need. But, if companies want the costing system as a internal decision making tool only, they need to design the ABC system fast and cheaply. This paper explains that Activity Analysis using existing finn material is good alternatives. So, this paper show the feasibility of Activity Analysis using existing firm material with comparing between job description, job specification information and Activity Analysis information.

  • PDF

A Study on the Structural Design and Analysis of a Deep-sea Unmanned Underwater Vehicle

  • Joung Tae-Hwan;Lee Jae-Hwan;Nho In-Sik;Lee Jong-Moo;Lee Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.7-14
    • /
    • 2006
  • This paper discusses the structural design and analysis of a 6,000 meters depth-rated capable deep-sea unmanned underwater vehicle (UUV) system. The UUV system is currently under development by Maritime and Ocean Engineering Research Institute(MOERI), Korea Ocean Research and Development Institute (KORDI). The UUV system is composed of three vehicles - a Remotely Operated Vehicle (ROV), an Autonomous Underwater Vehicle (AUV) and a Launcher - which include underwater equipment. The dry weight of the system exceeds 3 tons hence it is necessary to carry out the optimal design of structural system to ensure the minimum weight and sufficient space within the frame for the convenient use of the embedded equipments. In this paper, therefore, the structural design and analysis of the ROV and launcher frame system were carried out, using the optimizing process. The cylindrical pressure vessels for the ROV were designed to resist the extreme pressure of 600 bars, based on the finite element analysis. The collapse pressure for the cylindrical pressure vessels was also checked through a theoretical analysis.

On the Ensuring Safety and Reliability through the Application of ISO/PAS 21448 Analysis and STPA Methodology to Autonomous Vehicle

  • Kim, Min Joong;Choi, Kyoung Lak;Kim, Joo Uk;Kim, Tong Hyun;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.169-177
    • /
    • 2021
  • Recently, the use of electric and electronic control systems is increasing in the automobile industry. This increase in the electric and electronic control system greatly increases the complexity of designing a vehicle, which leads to an increase in the malfunction of the system, and a safety problem due to the malfunction is becoming an issue. Based on IEC 61508 relating to the functional safety of electrical/electronic/programmable electronics, the ISO 26262 standard specific to the automotive sector was first established in 2011, and a revision was published in 2018. Malfunctions due to system failure are covered by ISO 26262, but ISO/PAS 21448 is proposed to deal with unintended malfunctions caused by changes in the surrounding environment. ISO 26262 sets out safety-related requirements for the entire life cycle. Functional safety analysis includes FTA (Fault Tree Analysis), FMEA (Failure Mode and Effect Analysis), and HAZOP (Hazard and Operability). These analysis have limitations in dealing with failures or errors caused by complex interrelationships because it is assumed that a failure or error affecting the risk occurs by a specific component. In order to overcome this limitation, it is necessary to apply the STPA (System Theoretic Process Analysis) technique.