• Title/Summary/Keyword: Analysis step

Search Result 6,806, Processing Time 0.036 seconds

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

A Study on the STEP Modularization of Civil Engineering Elements of "ISO 10303 AP241: Generic Model for Lifecycle Support of AEC Facilities" ("ISO 10303 AP241: Generic model for lifecycle support of AEC facilities"의 시설물관련 요소의 STEP Modularization에 관한 연구)

  • Byon, Su-Jin;An, Kyung-Ik;Kim, In-Han
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.366-375
    • /
    • 2007
  • Although the STEP modularization is the major development methodology for STEP Application Protocol, there have been few studies on the STEP Modularization in Korea. The necessity of STEP Modularization research has been raised continuously. In addition, the importance became larger and larger because most of newly developing APs, including AP241, are developed using modularization approach. The object of this study is to investigate the basic structure and contents of AEC facilities related Application Modules using STEP Modularization. This study examines 1) the technical analysis regarding STEP Modularization, 2) application modules development regarding civil engineering elements of AP241; Aec_faciliteis_classification", "Aec_civil_item", and "Aec_civil_componet", 3) the developed application modules verification, and 4) the implementation methodology suggestion for application modules and modular AP.

Analysis of Step Discontinuities of Microstrip Lines Using the Mode-Matching Technique (모드 정합법을 이용한 마이크로스트립 선로 계단형 불연속의 해석)

  • 고동수;윤상원;장익수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1810-1816
    • /
    • 1990
  • Step discontinuities of microstrip lines are analyzed using the mode-matching technique based on the well-known waveguide model. Including higher-order modes, the generalized scattering matrices are obtained. Asymmetrical step discontinuities as well as symmetrical step discontinuities are analyzed. The resonance characteristics of microstrip patches are calculated by cascading two microstrip step discontinuities through a uniform microstrip line. Experimental results agree well with theroretical ones.

  • PDF

Restoration design of step-pool sequence in mountain streams (산지하천의 스텝-풀 연속체 복원설계)

  • Kim, Ki Heung
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.29-43
    • /
    • 2020
  • The purpose of this study is to propose the design criteria and detailed design model by reviewing the issues related to geometry, formation process, destruction process, hydraulic function, restoration and ecological function of the step-pool from the existing research results, to apply the step-pool sequences to river restoration. Based on the analysis and review results, the design criteria for the structure and size of the step-pool are presented as ratio of the step spacing and the channel width, ratio of the unit step slope and channel slope, and ratio of step height and the particle size. To ensure structural stability of the step, stability analysis method of overturning based on the keystone theory was proposed as a design criterion. As a detailed design concept, a layout model was proposed by applying the imbricating structure of keystones and arch stones to the planar, longitudinal and transverse configurations of the step-pool.

Simulation of Sediment Deposition Behavior in a Reservoir using a SED2D model: Focusing on Sensitivity of Simulation Time Step (SED2D모형을 이용한 저수지 퇴사거동 모의-모의시간간격의 민감도를 중심으로)

  • Kim, Dae Guen
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.87-95
    • /
    • 2012
  • In this study, the following conclusions were obtained from an investigation of the effect of the simulation time step on the simulation results of the two-dimensional, vertically averaged sediment transport model SED2D and an analysis of the deposited sediment distribution in suspended sediments of reservoirs according to grain size. The simulation time step has a significant effect on the deposited sediment distribution in a reservoir. In particular, if the simulation time step is set to be excessively large, physically invalid results are obtained. Additionally, in order to determine an appropriate simulation time step for SED2D, the selection of a simulation time step that will allow the analysis of the suspended sediment concentration profile at the main points of the simulation domain is necessary. The deposited sediment distribution in a reservoir according to grain size, including suspended sediments of clay, silt, and sand, was successfully simulated. Such information will prove valuable in application to the establishment of efficient management and reduction measures of reservoir sediment deposits.

STEP-Based CAE/CAO Information Exchange (STEP을 이용한 CAE/CAO 정보교환)

  • Baek, Ju-Hwan;Min, Seung-Jae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1234-1239
    • /
    • 2003
  • In the product design process computer-aided engineering and optimization tools are widely utilized in order to reduce the total development time and cost. Since several simulation tools are involved in the process, information losses, omissions, or errors are common and the importance of seamless information exchange among the tools has been increased. In this study ISO STEP standards are adopted to represent the neutral format for CAE/CAO information exchange. The schema of AP209 is used to define the information of finite element analysis and the new schema is proposed to describe the information of structural optimization based on the STEP methodology. The schema is implemented by EXPRESS, information modeling language, and ST-Developer is employed to generate C++ classes and STEP Rose Library by using the schema denoted. To substantiate the proposed approach, the information access interfaces of the finite element modeling software (FEMAP), structural optimization software (GENESIS) and in-house topology optimization program are developed. Examples of the size optimization of a three-bar truss and topology optimization of a MBB beam are shown to validate the information exchange of finite element analysis and structural optimization using STEP standards.

  • PDF

A Study on the Extrusion Using Two-Step Processes for Manufacturing Helical Gear (2단계공정을 이용한 헬리컬기어 압출에 관한 연구)

  • Jung, Sung-Yuen;Park, Joon-Hong;Kim, Chang-Ho;Chang, Young-June;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.34-40
    • /
    • 2007
  • In this study, focusing on reducing a load in forming helical gears, the extrusion using two-step processes for manufacturing helical gear is proposed. The process is composed of the extrusion step in which spur gear to be used as a preform in next step is formed, and the torsion step in which the preform of spur gear is formed to helical gear. Upper-bound theory for the two-step process is applied and compared with the results of experiment. The result of upper-bound solution has a good agreement with that of the experiment and the FE analysis. The newly proposed method can be used as an advanced forming technique to remarkably reduce a forming load, to prolong a tool life, and to replace the conventional forming process of helical gears. Results obtained from the extrusion using two-step processes enable the designer and manufacturer of helical gear to be more efficient in this field.

Three dimensional multi-step inverse analysis for optimum design of initial blank in sheet metal forming (박판금속성형의 초기 블랭크 최적설계를 위한 삼차원 다단계 역해석)

  • Lee, Choong-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2055-2067
    • /
    • 1997
  • Values of process parameters in sheet metal forming can be estimated by various one-step inverse methods. One-step inverse methods based on deformation theory, however, cause some amount of error. The amount of error is generally increased as the deformation path becomes more complex. As a remedy, a new three dimensional multi-step inverse method is introduced for optimum design of blank shapes and strain distributions from desired final shapes. The approach extends a one-step inverse method to a multi-step inverse method in order to reduce the amount of error. The algorithm developed is applied to square cup drawing to confirm its validity by demonstrating reasonably accurate numerical results. Rapid calculation with this algorithm enables easy determination of an initial blank of sheet metal forming.

Design of a Multi-Step Warm Heading Process for Subminiature Screws (초소형 스크류 온간 다단 헤딩공정 연구)

  • Jang, Yeon Hui;Jeong, Jin Hwan;Jang, Myung Guen;Hong, Jae-Keun;Kim, Jong-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.83-87
    • /
    • 2017
  • A multi-step warm forging process for subminiature screws is investigated. Due to the low formability of Titanium alloys, bit forming of Titanium screws is difficult by cold forging. In order to overcome this low formability of Titanium alloys, two candidate processes, i.e., multi-step forging and warm forging are introduced. First, a multi-step (two-step) forging process is investigated. The punch shape and stroke of forging during the first step is designed via various analyses. Finally, the bit formability is investigated at different forging temperatures. Analyses are carried out for two-step forging at various temperatures and the formability under these thermal conditions is compared.

Stability of multi-step flexural-shear plates with varying cross-section

  • Xu, J.Y.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.597-612
    • /
    • 2003
  • In this paper, multi-story buildings with shear-wall structures and with narrow rectangular plane configuration are modeled as a multi-step flexural-shear plate with varying cross-section for buckling analysis. The governing differential equation of such a plate is established. Using appropriate transformations, the equation is reduced to analytically solvable equations by selecting suitable expressions of the distribution of stiffness. The exact solutions for buckling of such a one-step flexural-shear plate with variable stiffness are derived for several cases. A new exact approach that combines the transfer matrix method and closed from solution of one-step flexural-shear plate with continuously varying stiffness is presented for stability analysis of multi-step non-uniform flexural-shear plate. A numerical example shows that the present methods are easy to implement and efficient.