• 제목/요약/키워드: Analysis on Vulnerability

Search Result 972, Processing Time 0.035 seconds

A Study on the Vulnerability Assessment for Agricultural Infrastructure using Principal Component Analysis (주성분 분석을 이용한 농업생산기반의 재해 취약성 평가에 관한 연구)

  • Kim, Sung Jae;Kim, Sung Min;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The purpose of this study was to evaluate climate change vulnerability over the agricultural infrastructure in terms of flood and drought using principal component analysis. Vulnerability was assessed using vulnerability resilience index (VRI) which combines climate exposure, sensitivity, and adaptive capacity. Ten flood proxy variables and six drought proxy variables for the vulnerability assessment were selected by opinions of researchers and experts. The statistical data on 16 proxy variables for the local governments (Si, Do) were collected. To identify major variables and to explain the trend in whole data set, principal component analysis (PCA) was conducted. The result of PCA showed that the first 3 principal components explained approximately 83 % and 89 % of the total variance for the flood and drought, respectively. VRI assessment for the local governments based on the PCA results indicated that provinces where having the relatively large cultivation areas were categorized as vulnerable to climate change.

Development of a Climate Change Vulnerability Assessment Analysis Tool: Based on the Vulnerability Assessment of Forest Fires in Chungcheongnam-do (기후변화 취약성 평가 분석도구 개발에 관한 연구: 충남지역 산불 취약성을 중심으로)

  • Yoon, Soo Hyang;Lee, Sang Sin
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.275-285
    • /
    • 2017
  • Chungnam region has established and executed the 2nd Climate Change Adaptation Initiative Execution Plan (2017~2021) based on the Framework Act on Low Carbon, Green Growth. The Execution Plan is established based on the results of climate change vulnerability assessment using the CCGIS, LCCGIS, and VESTAP analysis tools. However, the previously developed climate change vulnerability assessment tools (CCGIS, LCCGIS, VESTAP) cannot reflect the local records and the items and indices of new assessment. Therefore, this study developed a prototype of climate change vulnerability assessment analysis tool that, unlike the previous analysis tools, designs the items and indices considering the local characteristics and allows analysis of grid units. The prototype was used to simulate the vulnerability to forest fires of eight cities and seven towns in Chungcheongnam-do Province in the 2010s, 2020s, and 2050s based on the RCP (Representative Concentration Pathways) 8.5 Scenario provided by the Korea Meteorological Administration. Based on the analysis, Chungcheongnam-do Province's vulnerability to forest fires in the 2010s was highest in Seocheon-gun (0.201), followed by Gyeryong-si (0.173) and Buyeo-gun (0.173) and the future prospects in the 2050s was highest in Seocheon-gun (0.179), followed by Gyeryong-si (0.169) and Buyeo-gun (0.154). The area with highest vulnerability to forest fires in Chungcheongnam-do Province was Biin-myeon, Seocheon-gun and the area may become most vulnerable was Pangyo-myeon, Seocheon-gun. The prototype and the results of analysis may be used to establish the directions and strategies in regards to the vulnerability to wild fires to secure each local government's 2nd execution plan and attainability.

Refining software vulnerbility Analysis under ISO/IEC 15408 and 18045 (ISO/IEC 15408, 18045 기반 소프트웨어 취약성 분석 방법론)

  • Im, Jae-Woo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.5
    • /
    • pp.969-974
    • /
    • 2014
  • CC (Common Criteria) requires collecting vulnerability information and analyzing them by using penetration testing for evaluating IT security products. Under the time limited circumstance, developers cannot help but apply vulnerability analysis at random to the products. Without the systematic vulnerability analysis, it is inevitable to get the diverse vulnerability analysis results depending on competence in vulnerability analysis of developers. It causes that the security quality of the products are different despite of the same level of security assurance. It is even worse for the other IT products that are not obliged to get the CC evaluation to be applied the vulnerability analysis. This study describes not only how to apply vulnerability taxonomy to IT security vulnerability but also how to manage security quality of IT security products practically.

A study on automation of AV(Atomic Vulnerability) ID assignment (단위 취약점 식별자 부여 자동화에 대한 연구)

  • Kim, Hyung-Jong
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.49-62
    • /
    • 2008
  • AV (Atomic Vulnerability) is a conceptual definition representing a vulnerability in a systematic way, AVs are defined with respect to its type, location, and result. It is important information for meaning based vulnerability analysis method. Therefore the existing vulnerability can be expressed using multiple AVs, CVE (common vulnerability exposures) which is the most well-known vulnerability information describes the vulnerability exploiting mechanism using natural language. Therefore, for the AV-based analysis, it is necessary to search specific keyword from CVE's description and classify it using keyword and determination method. This paper introduces software design and implementation result, which can be used for atomic vulnerability analysis. The contribution of this work is in design and implementation of software which converts informal vulnerability description into formal AV based vulnerability definition.

  • PDF

Assessment of seismic damage inspection and empirical vulnerability probability matrices for masonry structure

  • Li, Si-Qi;Chen, Yong-Sheng;Liu, Hong-Bo;Du, Ke;Chi, Bo
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.387-399
    • /
    • 2022
  • To study the seismic damage of masonry structures and understand the characteristics of the multi-intensity region, according to the Dujiang weir urbanization of China Wenchuan earthquake, the deterioration of 3991 masonry structures was summarized and statistically analysed. First, the seismic damage of multistory masonry structures in this area was investigated. The primary seismic damage of components was as follows: Damage of walls, openings, joints of longitudinal and transverse walls, windows (lower) walls, and tie columns. Many masonry structures with seismic designs were basically intact. Second, according to the main factors of construction, seismic intensity code levels survey, and influence on the seismic capacity, a vulnerability matrix calculation model was proposed to establish a vulnerability prediction matrix, and a comparative analysis was made based on the empirical seismic damage investigation matrix. The vulnerability prediction matrix was established using the proposed vulnerability matrix calculation model. The fitting relationship between the vulnerability prediction matrix and the actual seismic damage investigation matrix was compared and analysed. The relationship curves of the mean damage index for macrointensity and ground motion parameters were drawn through calculation and analysis, respectively. The numerical analysis was performed based on actual ground motion observation records, and fitting models of PGA, PGV, and MSDI were proposed.

A Study on the Mobile Application Security Threats and Vulnerability Analysis Cases

  • Kim, Hee Wan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.180-187
    • /
    • 2020
  • Security threats are increasing with interest due to the mass spread of smart devices, and vulnerabilities in developed applications are being exposed while mobile malicious codes are spreading. The government and companies provide various applications for the public, and for reliability and security of applications, security checks are required during application development. In this paper, among the security threats that can occur in the mobile service environment, we set up the vulnerability analysis items to respond to security threats when developing Android-based applications. Based on the set analysis items, vulnerability analysis was performed by examining three applications of public institutions and private companies currently operating as mobile applications. As a result of application security checks used by three public institutions and companies, authority management and open module stability management were well managed. However, it was confirmed that many security vulnerabilities were found in input value verification, outside transmit data management, and data management. It is believed that it will contribute to improving the safety of mobile applications through the case of vulnerability analysis for Android application security.

A Study on Vulnerability Assessment for the Digital Assets in NPP Based on Analytical Methods (분석적 방법을 적용한 원전디지털자산 취약점 평가 연구)

  • Kim, In-kyung;Kwon, Kook-heui
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1539-1552
    • /
    • 2018
  • The necessity of establishing a more secure cyber security system is emerging to protect NPP against cyber attacks as nuclear facilities become increasingly reliant on digital system. Proper security measures should be established through periodic analysis and evaluation of vulnerabilities. However, as Nuclear facilities has safety characteristics as their top priority and it requires a lot of time and cost to construct regarding the activities for vulnerability analysis, it is difficult to apply the existing vulnerability analysis environment and analysis tools. In this study, We propose a analytical vulnerability assessment method to overcome the limitations of existing vulnerability analysis methods through analysis the existing vulnerability analysis methods and the issues to be considered when applying the vulnerability analysis method.

A Study on the Framework of Integrated Vulnerability Analysis of Domestic Nuclear Facilities (국내 원자력 시설 통합 취약점 분석 프레임워크 연구)

  • Mi-Joo Shin;Seong-su Yoon;Ieck-chae Euom
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • Cyber attacks on national infrastructure, including large-scale power outages in Ukraine, have continued in recent years. As a result, ICS-CERT vulnerabilities have doubled compared to last year, and vulnerabilities to industrial control systems are increasing day by day. Most control system operators develop vulnerability countermeasures based on the vulnerability information sources provided by ICS-CERT in the United States. However, it is not applicable to the security of domestic control systems because it does not provide weaknesses in Korean manufacturers' products. Therefore, this study presents a vulnerability analysis framework that integrates CVE, CWE, CAPE, and CPE information related to the vulnerability based on ICS-CERT information (1843 cases). It also identifies assets of nuclear facilities by using CPE information and analyzes vulnerabilities using CVE and ICS-CERT. In the past, only 8% of ICS-CERT's vulnerability information was searched for information on any domestic nuclear facility during vulnerability analysis, but more than 70% of the vulnerability information could be searched using the proposed methodology.

A Cross-check based Vulnerability Analysis Method using Static and Dynamic Analysis (정적 및 동적 분석을 이용한 크로스 체크기반 취약점 분석 기법)

  • Song, Jun-Ho;Kim, Kwang-Jik;Ko, Yong-Sun;Park, Jae-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.863-871
    • /
    • 2018
  • Existing vulnerability analysis tools are prone to missed detections, incorrect detections, and over-detection, which reduces accuracy. In this paper, cross-checking based on a vulnerability detection method using static and dynamic analysis is proposed, which develops and manages safe applications and can resolve and analyze these problems. Risks due to vulnerabilities are computed, and an intelligent vulnerability detection technique is used to improve accuracy and evaluate risks under the final version of the application. This helps the development and execution of safe applications. Through incorporation of tools that use static analysis and dynamic analysis techniques, our proposed technique overcomes weak points at each stage, and improves the accuracy of vulnerability detection. Existing vulnerability risk-evaluation systems only evaluate self-risks, whereas our proposed vulnerability risk-evaluation system reflects the vulnerability of self-risk and the detection accuracy in a complex fashion to evaluate relative. Our proposed technique compares and analyzes existing analysis tools, such as lists for detections and detection accuracy based on the top 10 items of SANS at CWE. Quantitative evaluation systems for existing vulnerability risks and the proposed application's vulnerability risks are compared and analyzed. We developed a prototype analysis tool using our technique to test the application's vulnerability detection ability, and to show that our proposed technique is superior to existing ones.

Seismic damage vulnerability of empirical composite material structure of adobe and timber

  • Si-Qi Li
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.429-442
    • /
    • 2023
  • To study the seismic vulnerability of the composite material structure of adobe and timber, we collected and statistically analysed empirical observation samples of 542,214,937 m2 and 467,177 buildings that were significantly impacted during the 179 earthquakes that occurred in mainland China from 1976 to 2010. In multi-intensity regions, combined with numerical analysis and a probability model, a non-linear continuous regression model of the vulnerability, considering the empirical seismic damage area (number of buildings) and the ratio of seismic damage, was established. Moreover, a probability matrix model of the empirical seismic damage mean value was provided. Considering the coupling effect of the annual and seismic fortification factors, an empirical seismic vulnerability curve model was constructed in the multiple-intensity regions. A probability matrix model of the mean vulnerability index (MVI) was proposed, and was validated through the above-mentioned reconnaissance sample data. A matrix model of the MVI of the regions (19 provinces in mainland China) based on the parameter (MVI) was established.