• Title/Summary/Keyword: Analysis of the System

Search Result 69,069, Processing Time 0.087 seconds

Design and Implementation of GIS Based Automatic Terrain Analysis System for Field Operation

  • Kim, Kyoung-Ok;Yang, Young-Kyu;Lee, Jong-Hoon;Choi, Kyoung-Ho;Jung, In-Sook;Kim, Tae-Kyun
    • 대한원격탐사학회지
    • /
    • 제10권2호
    • /
    • pp.121-132
    • /
    • 1994
  • A GIS based tactical terrain analysis system named ATTAS(Army Tactical Terrain Analysis Software) has been designed and implemented to support the field commanders for enhancing the capabiliy of their unit and efficiency of weapon system. This system is designed to provide computer graphics environment in which the analyst can interactively operate the entire analyzing process such as selecting the area of interest, performing analysis functions, simulating required battlefield operation and display the results. This system can be divided into three major sections; the terrain analysis modules, utilites, and graphic editor. The terrain analysis module inclused surface analysis, line of sight analysis, enemy disposition, 3D display, radar coverage, logistic route analysis, shortest path analysis, atmospheric phenomena prediction, automated IPB (Inteligence preparation of Battlefield), and other applied analysis. A combination of 2D and 3D computer graphics techniques using the X-window system with OSF/Motif in UNIX workstation was adopted as the user interface. The integration technique of remotely sensed images and GIS data such as precision registration, overlay, and on-line editing was developed and implemented. An efficient image and GIS data management technique was also developed and implemented using Oracle Database Management System.

자동차 충돌문제에 MDO를 적용하기 위한 시스템 해석 방법 개발 (Development of System Analysis for the Application of MDO to Crashworthiness)

  • 신문균;김창희;박경진
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.210-218
    • /
    • 2003
  • MDO (multidisciplinary design optimization) technology has been proposed and applied to solve large and complex optimization problems where multiple disciplinaries are involved. In this research. an MDO problem is defined for automobile design which has crashworthiness analyses. Crash model which are consisted of airbag, belt integrated seat (BIS), energy absorbing steering system .and safety belt is selected as a practical example for MDO application to vehicle system. Through disciplinary analysis, vehicle system is decomposed into structure subspace and occupant subspace, and coupling variables are identified. Before subspace optimization, values of coupling variables at given design point must be determined with system analysis. The system analysis in MDO is very important in that the coupling between disciplines can be temporary disconnected through the system analysis. As a result of system analysis, subspace optimizations are independently conducted. However, in vehicle crash, system analysis methods such as Newton method and fixed-point iteration can not be applied to one. Therefore, new system analysis algorithm is developed to apply to crashworthiness. It is conducted for system analysis to determine values of coupling variables. MDO algorithm which is applied to vehicle crash is MDOIS (Multidisciplinary Design Optimization Based on Independent Subspaces). Then, structure and occupant subspaces are independently optimized by using MDOIS.

동적능동제어시스템의 FORM기반 구조신뢰성해석 (FORM-based Structural Reliability Analysis of Dynamical Active Control System)

  • 옥승용
    • 한국안전학회지
    • /
    • 제28권1호
    • /
    • pp.74-80
    • /
    • 2013
  • This study describes structural reliability analysis of actively-controlled structure for which random vibration analysis is incorporated into the first-order reliability method (FORM) framework. The existing approaches perform the reliability analysis based on the RMS response, whereas the proposed study uses the peak response for the reliability analysis. Therefore, the proposed approach provides us a meaningful performance measure of the active control system, i.e., realistic failure probability. In addition, it can deal with the uncertainties in the system parameters as well as the excitations in single-loop reliability analysis, whereas the conventional random vibration analysis requires double-loop reliability analysis; one is for the system parameters and the other is for stochastic excitations. The effectiveness of the proposed approach is demonstrated through a numerical example where the proposed approach shows fast and accurate reliability (or inversely failure probability) assessment results of the dynamical active control system against random seismic excitations in the presence of parametric uncertainties of the dynamical structural system.

전산지원도구를 이용한 자동열차제어장치의 기능분석 연구 (The Functional Analysis of Automatic Train Operation(ATO) used by System Engineering Design Tool)

  • 이우동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.299-301
    • /
    • 2005
  • The urban transit system is operated by driverless and automatic.In driverless and automatic system, the system function is accomplished exactly to obtain the safety and reliability of system and the system is designed to minimize risk. In order to design the system, the functional analysis is performed. Recently functional analysis is performed by design toolwhich is used and verified by aerospace, military, etc. Generally, the design tool is used to perform functional analysis in urban transit system development project. The design toolassist the system engineer to analysis the function of system in basic design. Therefore, In this paper, it is performed the functional analysis to satisfy the system requirement of urban transit system and to confirm the operation of system using design tool.

  • PDF

전산지원도구를 이용한 차세대전동차 기능분석 연구 (A Study on Functional Analysis of Advanced EMU used by System Engineering Design Tool)

  • 이우동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1663-1665
    • /
    • 2005
  • The urban transit system is operated by driverless and automatic. In driverless and automatic system, the system function is accomplished exactly to obtain the safety and reliability of system and the system is designed to minimize risk. In order to design the system, the functional analysis is performed. Recently functional analysis is performed by design tool which is used and verified by aerospace, military, etc. Generally, the design tool is used to perform functional analysis in urban transit system development project. The design toolassist the system engineer to analysis the function of system in basic design. Therefore, in this paper, it is performed the functional analysis to satisfy the system requirement of urban transit system and to confirm the operation of system using design tool.

  • PDF

″Issues in designing a Knowledge-based system to support process modeling″

  • Suh, Eui-Ho;Kim, Suyeon
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2001년도 추계학술대회 논문집
    • /
    • pp.50-54
    • /
    • 2001
  • Information systems development entails planning, analysis, design and construction phases. The analysis phase identifying user requirements is the most important of these phases. Since unidentified defects in the early phase causes increased work and costs as development proceeds, the quality of analysis results affects the quality of the resultant system. Major tasks in the analysis phase are data modeling and process modeling. Research on building a knowledge-based system for data modeling have been conducted much, however, not sufficiently for process modeling. As a system environment with high user interaction increases, research on process modeling methods and knowledge- based systems considering such environment are required. In this research, a process modeling framework for information systems with high user interaction is suggested and a knowledge-based system for supporting the suggested framework is implemented. A proposed model consists of the following tasks: event analysis, process analysis, and event/process interaction analysis. Event analysis identifies business events and their responses. Process analysis break down the processes of an enterprise into progressively increasing details. Decomposition begins at the function level and ends when the elementary process level is reached. Event/process interaction analysis verifies the results of process analysis and event analysis. A knowledge-based system for supporting a proposed process modeling framework is implemented in a web-based environment.

  • PDF

분산전원을 포함하는 시스템 운용 플랫폼을 위한 송배전 통합 해석 하이브리드 알고리즘 개발 (Development of a Transmission/Distribution Integrated Analysis Hybrid Algorithm for System Operation Platform Including Distributed Generation)

  • 송종석;서재완;장문종;장길수
    • 조명전기설비학회논문지
    • /
    • 제27권1호
    • /
    • pp.35-45
    • /
    • 2013
  • Owing to the increase in the penetration of distributed generation the DGs connected to the distribution system have an effect on the system conditions of the transmission system and neighboring distribution systems. This makes the separate analysis of the transmission and distribution system no longer valid and requires the consideration of both the system in the analysis process. This paper proposes a transmission/distribution integrated analysis hybrid algorithm that would ensure the accurate analysis of the system by reflecting the results of the transmission and distribution system analysis on each other. Different scenarios are being analysed in order to verify the effectiveness of the hybrid algorithm by observing the effects of the DG connected distribution system on the transmission system and neighboring distribution systems. The algorithm and simulations performed are being conducted by MATLAB and the IEEE 30 bus system and a test distribution system has been utilized for the transmission and distribution systems respectively.

시스템엔지니어링 프로세스에 의한 국방 분석평가자료 수집체계 연구 (A study of data acquisition system of defense analysis & evaluation by systems engineering process)

  • 민성기;최순황
    • 시스템엔지니어링학술지
    • /
    • 제1권2호
    • /
    • pp.69-76
    • /
    • 2005
  • Defense analysis & evaluation includes menace analysis, validation analysis, problem analysis, scientific technical analysis, technical trade-off analysis, alternative analysis, cost analysis, etc. Reliable related data is required to perform these analysis activities efficiently. but in case of these defense analysis & evaluation data acquisition system, the data is insufficient and scattered about each organization. The data of database system is also not utilized sufficiently. Abroad technical data is also low level data such as catalog or military officer's collection. Therefore, this paper propose defense analysis & evaluation data acquisition system by systems engineering process. we also propose construction method of data acquisition system.

  • PDF

Development of Expert System for Tower Cranes

  • Kim, Ki-sung;Kang, Dong-gil;Hong, Ki-sup
    • Journal of Ship and Ocean Technology
    • /
    • 제3권2호
    • /
    • pp.27-48
    • /
    • 1999
  • The paper is concerned with application to develop the expert system, which structural analysis and design process for tower cranes. The system is organized into three groups. One is pre-processor for creating input data files, another is `model former' which combines knowledge-base with inference engine for automatic generating structural analysis models, a third is application group for final analysis checks. In this study, geometric subroutine of `model former' designates node positions, nodes, elements numbers and element types. Load data subroutine computes weight of tower crane and device, slewing force, cargo load, wind force form rules or equations in knowledge-base. Also, Property and boundary subroutine applies element properties and boundary conditions to suitable elements and nodes. Design and analysis expert system for tower crane integrates these subroutine, `model former' and pre-processor. RBR(Rule-Base Reasoning) was adopted for a reasoning strategy of this expert system. And this expert system can produce structural analysis model and data, which can be used in ordinary structural analysis program (SAP, ADINA or NASTRAN, etc.). In this paper, this expert system produces format of the analysis model data, which are used in MSC/NASTRAN. The main discussions included in the paper are introduction of the tower crane and structural analysis, composition of the design expert system for tower crane and structural analysis using the expert system.

  • PDF