• Title/Summary/Keyword: Analysis of ginsenosides

Search Result 210, Processing Time 0.03 seconds

Effect of Ginseng Saponins on the Biosynthesis of Prostaglandins (인삼 사포닌 성분이 프로스타글란딘류 생성에 미치는 영향)

  • 이선희;박찬웅
    • Journal of Ginseng Research
    • /
    • v.13 no.2
    • /
    • pp.202-210
    • /
    • 1989
  • The effects of Ginseng saponins on the in vitro biosynthesis of prostaglandins were examined in order to identify the role of some Ginseng components on the regulation of arachidonic arid metabolism. The productions of prostaglandin $E_2$ (PG$E_2$), $F_2$ (PGF2), thromboxane $B_2$(TX$B_2$) and 6-ketoprostaglandin Fl (6-Keto-PGF1) from [3Hl-arachidonic acid were evaluatpf by radiochromatographic analysis with rabbit kidney microtome, human platelet homogenate and bovine aortic microsome. The amounts of the total prostaglandins produced by cyclooxygenase activity and malondialdehyde from arachidonic acid didn't show significant changes in the presence of Ginseng saponins. Both of panaxadiol and panaxatriol didn't affect the production of PG$E_2$ while the formations of PG$F_2$( and TX$B_2$( were nearkedly reduced and the production of prostacyclin was increased. The formation of TXBE was reduced by ginsenoside $Rb_2$, Rc, and Re, however the production of 6-Keto-PGF1 was increased dose dependently up to 1 mg/ml. Moreover, platelet aggregations induced by arachidonic acid and U46619 (9.11-methanepoxy PG$H_2$), TX$A_2$ mimetics, were also inhibited by three ginsenosides. The effect of G-Re on prostacyclin synthetase was inhibited by tranylcypromine, prostacyclin synthetase inhibitor. These results suggest that Ginseng saponins may not directly act on cyclooxygenase but affect on the divergent pathway from endoperoxide.

  • PDF

Conversion of Ginsenoside Rb1 and Taxonomical Characterization of Stenotrophomonas sp. 4KR4 from Ginseng Rhizosphere Soil (인삼 근권 토양에서 분리한 Stenotrophomonas sp. 4KR4의 Ginsenoside Rb1 전환능 및 분류학적 특성)

  • Jeon, In-Hwa;Cho, Geon-Yeong;Han, Song-Ih;Yoo, Sun Kyun;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.369-376
    • /
    • 2013
  • We isolated the ${\beta}$-glucosidase producing bacteria (BGB) in ginseng root system (rhizosphere soil, rhizoplane, inside of root). Phylogenetic analysis of the 28 BGB based on the 16S rRNA gene sequences, BGB from rhizosphere soil belong to genus Stenotrophomonas (3 strains), Bacillus (1 strain), and Pseudoxanthomonas (1 strain). BGB isolates from rhizoplane were Stenotrophomonas (16 strains), Streptomyces (1 strain) and Microbacterium (1 strain). BGB from inside of root were categorized into Stenotrophomonas (3 strains) and Lysobacter (2 strains). Especially, Stenotrophomonas comprised the largest portion (approximately 90%) of total isolates and Stenotrophomonas was a dominant group of the ${\beta}$-glucosidase producing bacteria. We selected strain 4KR4, which had high ${\beta}$-glucosidase activity (108.17 unit), could transform ginsenoside Rb1 into Rd, Rg3, and Rh2 ginsenosides. In determining its relationship on the basis of 16S rRNA sequence, 4KR4 strain was most closely related to Stenotrophomonas rhizophila e-$p10^T$ (AJ293463) (99.62%). Therefore, on the basis of these polyphasic taxonomic evidence, the ginsenoside Rb1 converting bacteria 4KR4 was identified as Stenotrophomonas sp. 4KR4 (=KACC 17635).

Effects of Film Packaging and Gas Composition on the Distribution and Quality of Ginseng Sprouts (새싹인삼의 필름포장과 가스조성이 품질특성에 미치는 영향)

  • Chang, Eun Ha;Lee, Ji Hyun;Choi, Ji Weon;Shin, Il Sheob;Hong, Yoon Pyo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.152-166
    • /
    • 2020
  • Background: Ginsenosides, which have various physiological activities, are known to be abundant in the leaves and roots of ginseng. Ginseng sprouts can be used as a fresh vegetable and roots, stems, and leaves of ginseng can be consumed. This study aimed to investigate the effect of carbon dioxide treatment and the modified atmosphere (MA) packaging method in suppressing quality deterioration during the distribution of ginseng sprouts. Methods and Results: Ginseng sprouts were packed using Styrofoam, barrier film + non gas treatment, barrier film + gas treatment, 15 ㎛ polyamide (PA) double film + non gas treatment, 15 ㎛ PA double film + gas treatment, 25 ㎛ PA film + non gas treatment, or 25 ㎛ PA film + gas treatment. Quality parameters including gas composition, relative humidity, chlorophyll SPAD (Soil Plant Analysis Development) value, firmness, and rate of quality loss in ginseng sprouts were monitored at the following temperatures: 20℃, and 10℃. Ginseng sprouts packaged with 25 ㎛ PA film showed loss in quality because of wilting owing to low relative humidity within the film. Chlorophyll and firmness did not differ between film and gas treatments. The time point at which the combined loss from softening and decay owing to fungal, and bacterial infection and wilt reached 20% was considered the limit of distribution. At 20℃, the packaging not included in the 20% distribution loss rate limit or up to 7 days was 15 ㎛ PA double film + gas treatment. At 10℃, the packaging not included in the 20% distribution loss rate limit for up to 18 days were barrier film + gas treatment and 15 ㎛ PA double film + gas treatment. Conclusions: The film packaging suitable for the distribution of ginseng sprouts was found to be the barrier film and PA film with low gas permeability and maintaining hygroscopicity at 95% relative humidity. To prevent the loss in quality of ginseng sprouts, gas treatment (8% of O2 and 18% of CO2) in the film was found to be more suitable than no gas treatment for inhibition of decay.

Establishment of Optimal Fermentation Conditions for Steam-dried Ginseng Berry via Friendly Bacteria and Its Antioxidant Activities (생체친화성 균주에 의한 인삼열매증포 추출물의 최적발효조건 및 항산화활성)

  • Kim, Seung Tae;Kim, Hee Jung;Jang, Su Kil;Lee, Do Ik;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.77-83
    • /
    • 2013
  • In this study, we observed optimal conditions and suitable bacteria for the fermentation of steam-dried ginseng berry extracts (SGB) and determined antioxidant effects of the fermented extracts. Five bacteria (Lactobacillus fermentarum, L. plantarum, L. brevis, L. casei, Bacillus subtillis) were examined on their growth activities and viabilities in various culture temperatures ($25-35^{\circ}C$) and concentrations (25-100%). L. plantarum was considered to be the most suitable bacteria for the fermentation in both growth activity and viability. Moreover, the extracts fermented with L. plantarum showed more potent antioxidant efficacy in both 1,1-diphenyl-2-picrylhydrazyl radical and hydroxyl radical scavenging assay. High performance liquid chromatography analysis revealed that fermentation with L. plantarum changed the contents and components of ginsenosides. In conclusion, these data suggest that L. plantarum efficiently ferment SGB and the fermented extracts may have therapeutical values against oxidative stress and be a good candidate in adjuvant therapy where ginsenoside would be the main composition.

Anti-wrinkle Effect by Ginsenoside Rg3 Derived from Ginseng (인삼유래 Ginsenoside Rg3에 의한 항-주름 효과)

  • 김성우;정지헌;조병기
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.221-225
    • /
    • 2004
  • The root of Panax ginseng C. A. Meyer has been used as a traditional anti-aging and anti-wrinkle agent in the Orient. However, it is still unknown which component of ginseng is effective at suppressing wrinkle formation. Recently at least twenty ginsenosides regarded as the main active ingredients of ginseng have been isolated. Among them, we examined the effect of ginsenoside Rg3 on dermal ECM metabolism to elucidate the mechanism of anti-wrinkle by ginseng. In our study, to investigate the anti-wrinkle effect of the ginsenoside Rg3, ECM component and growth factor in dennis were evaluated by ELISA assay. Ginsenoside Rg3 was found to stimulate type I procollagen and fibronectin (FN) biosynthesis in a dose-dependent manner in normal human fibroblast culture (p < 0.05, n =3), and dose-dependently enhance TGF- ${\beta}$1 level (p < 0.05, n =3). In RT-PCR analysis mRNA level of c-Jun, a member of AP-1 transcription factor, was reduced by ginsenoside Rg3 in normal human fibroblast culture. These results indicate that ginsenoside Rg3 stimulates type I collagen and FN synthesis through the changes of TGF - ${\beta}$1 and AP-1 expression in fibroblasts.

Screening of Antimicrobial Activity Compounds from Korea Ginseng Fine Root (고려인삼의 세근을 이용한 항균성 물질 탐색)

  • Kim, Ah-Reum;Lee, Myung-Suk
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1244-1250
    • /
    • 2011
  • The study was performed to evaluate the antibacterial and antiviral activities of ginseng fine root in order to search for antibacterial substances. Among 8 kinds of fermentation strains, Lactobacillus plantarum was selected based on viable cell count and antibacterial activities during incubation. Optimum conditions of ginseng fine root fermentation for L. plantarum were incubation at $35^{\circ}C$ for 48 hr in 5% ginseng fine root broth. That methanolic extract of fermented ginseng fine root broth was observed to be antibacterial and have antiviral activities. The results of paper disc method of non-fermented extract and fermented extract measured against E. coli was 11 mm and 20 mm, S. aureus was 15 mm and 22 mm, respectively. Shaking flask method was observed to inhibit the growth E. coli and S. aureus in fermented extract by 99.9%. However, antiviral activity of Feline calicivirus (FCV) was mostly activated. Fermented extract was used to investigate the compositional changes of ginsenosides on HPLC analysis. By fermentation, ginsenoside Rg1, Re and Rd were increased, with Rd showing a significant increase of 50 ${\mu}g/g$. These results suggest that ginseng fine root extract is a useful resource.

Sensory Evaluation and Bioavailability of Red Ginseng Extract(Rg1, Rb1) by Complexation with ${\gamma}$-Cyclodextrin (${\gamma}$-cyclodextrin으로 포접한 홍삼추출물의 관능평가 및 Rg1, Rb1의 생체이용율)

  • Lee, Seung-Hyun;Park, Ji-Ho;Cho, Nam-Suk;Yu, Heui-Jong;You, Sung-Kyun;Cho, Cheong-Weon;Kim, Dong-Chool;Kim, Young-Heui;Kim, Ki-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.106-110
    • /
    • 2009
  • In order to reduce the bitter taste and improve the bioavailability of red ginseng extract(RGE), inclusion complexes (RGE-CD) of the extract with ${\alpha}-,\;{\beta}-,\;{\gamma}$-cyclodextrin were prepared and studied for their sensory quality and bioavailability compared to RGE. By complexation, the bitter taste-reducing efficacies of ${\alpha}$-CD and ${\beta}$-CD were much lower than that of ${\gamma}$-CD. In comparative sensory analysis for the bitter taste, RGE-${\gamma}$-CD10, prepared using 10%(w/w) of ${\gamma}$-CD, showed a score of 1.93(decreased by about 78%) compared to RGE as the control. In addition, in sensory analysis for flavor, RGE-${\gamma}$-CD10showed a score of 5.60. Upon increasing the amount of ${\gamma}$-CD to 15%(w/w) and 20%(w/w), respectively, the bitter taste of RGE-${\gamma}$-CD was removed and the flavor of RGE disappeared(scores of 2.67 and 1.67, respectively). Therefore RGE-${\gamma}$-CD10 was chosen as an optimum. The same dosages of RGE and RGE-${\gamma}$-CD10 were orally administered to SD(Sprague-Dawley) rats on a saponin basis, and the plasma concentrations of ginsenoside Rg1 and Rb1 were measured over time to estimate the average AUC(area under the plasma concentration versus time curve) of the ginsenosides. After the oral administration, there were no significant differences in the AUC values of the RGE and RGE-${\gamma}$-CD 10 groups for ginsenoside Rg1. However, AUC values for ginsenoside Rb1 were $25.8{\mu}g{\cdot}hr/mL$ in the RGE group and $81.5{\mu}g{\cdot}hr/mL$ in the RGE-${\gamma}$-CD 10 group, respectively. Therefore, the bioavailability of ginsenoside Rb1 in the RGE-${\gamma}$-CD 10 group was significantly higher by up to 315% compared with that in the RGE group(p = 0.0029). These results show that the bitter taste of RGE can be simultaneously removed by the complexation of RGE and ${\gamma}$-CD(RGE-${\gamma}$-CD) along with increased bioavailability.

Neuroprotective effects of cultured and fermented wild ginseng extracts on oxidative stress induced by hydrogen peroxide in PC12 cells (발효산삼배양근농축액의 산화방지 효과 및 과산화수소로 유발된 PC12 세포독성 보호효과)

  • Choi, Yeo Ok;Kim, Yu-Ri;Shin, Seung-Yong;Lee, Jae Geun;Kim, Chul Joong;Lee, Ye ji;Kang, Byeongju;Kim, Gwansu;Choi, Jee Eun;Han, Beom-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.383-390
    • /
    • 2018
  • Most neurodegenerative diseases are known to be influenced by oxidative stress. We investigated the anti-oxidative activity of the concentrate of fermented wild ginseng root culture (HLJG0701) containing ginsenosides Rg5 and Rk1. HLJG0701 showed effective DPPH and ABTS radical scavenging ability ($IC_{50}$: 16- and 4-fold dilution, respectively) and was inhibited dose-dependently by the $FeSO_4$-induced lipid peroxidation group (8- and 4-fold dilution: 2.3 and 1.5 nM, respectively). In MTT and LDH assays, 8-, 16-, 32- and 64-fold diluted HLJG0701 significantly increased cell viability by 70, 53, 35, and 26%, respectively. LDH released by HLJG0701 was reduced 1.3-fold with 8-fold diluted HLJG0701 compared to the $H_2O_2$-treated control. In addition, the inhibitory effect of HLJG0701 on oxidative stress in PC12 cells was confirmed by DCF-DA analysis (16-, 4-fold diluted HLJG0701: 50 and 68% ROS inhibition, respectively), TBARS (16- and 4-fold diluted HLJG0701: 50.7 and 46.5% inhibition, respectively), GPx (16- and 4-fold diluted HLJG0701: 133.3 and 227.3% release, respectively), and SOD analysis (16- and 4-fold diluted HLJG0701: 118.2 and 218.2% release, respectively). These results suggested that HLJG0701 protects neuronal cells by its anti-oxidative effects and hence can be a potential preventive material against neurodegenerative diseases.

A Role for Leu247 Residue within Transmembrane Domain 2 in Ginsenoside-Mediated α7 Nicotinic Acetylcholine Receptor Regulation

  • Lee, Byung-Hwan;Choi, Sun-Hye;Pyo, Mi Kyung;Shin, Tae-Joon;Hwang, Sung-Hee;Kim, Bo-Ra;Lee, Sang-MoK;Lee, Jun-Ho;Lee, Joon-Hee;Lee, Hui Sun;Choe, Han;Han, Kyou-Hoon;Kim, Hyoung-Chun;Rhim, Hyewhon;Yong, Joon-Hwan;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.591-599
    • /
    • 2009
  • Nicotinic acetylcholine receptors (nAChRs) play important roles in nervous system functions and are involved in a variety of diseases. We previously demonstrated that ginsenosides, the active ingredients of Panax ginseng, inhibit subsets of nAChR channel currents, but not ${\alpha}7$, expressed in Xenopus laevis oocytes. Mutation of the highly conserved Leu247 to Thr247 in the transmembrane domain 2 (TM2) channel pore region of ${\alpha}7$ nAChR induces alterations in channel gating properties and converts ${\alpha}7$ nAChR antagonists into agonists. In the present study, we assessed how point mutations in the Leu247 residue leading to various amino acids affect 20(S)-ginsenoside $Rg_3$ ($Rg_3$) activity against the ${\alpha}7$ nAChR. Mutation of L247 to L247A, L247D, L247E, L247I, L247S, and L247T, but not L247K, rendered mutant receptors sensitive to $Rg_3$. We further characterized $Rg_3$ regulation of L247T receptors. We found that $Rg_3$ inhibition of mutant ${\alpha}7$ nAChR channel currents was reversible and concentration-dependent. $Rg_3$ inhibition was strongly voltage-dependent and noncompetitive manner. These results indicate that the interaction between $Rg_3$ and mutant receptors might differ from its interaction with the wild-type receptor. To identify differences in $Rg_3$ interactions between wild-type and L247T receptors, we utilized docked modeling. This modeling revealed that $Rg_3$ forms hydrogen bonds with amino acids, such as Ser240 of subunit I and Thr244 of subunit II and V at the channel pore, whereas $Rg_3$ localizes at the interface of the two wild-type receptor subunits. These results indicate that mutation of Leu247 to Thr247 induces conformational changes in the wild-type receptor and provides a binding pocket for $Rg_3$ at the channel pore.

A Study on the Saponin Contents and Antioxidant Activity of the Ginseng and Extruded Ginseng by Using Different Solvents for Extraction (추출 용매에 따른 인삼과 압출 성형 인삼의 사포닌 함량 및 항산화 활성 연구)

  • Kim, Sung-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.528-534
    • /
    • 2011
  • This study was conducted to investigate the changes in saponin content and antioxidant activity of crude ginseng and extruded ginseng by using different solvent extraction methods. Each of the fractions was first extracted by 80% ethanol followed by ether treatment to remove the lipid components. Water soluble components were separated by ethylacetate and water saturated butanol. Four fraction, including 80% ethanol, ethylacetate, butanol and water were obtained from crude and extruded ginsengs to analyze saponin content and antioxidant activity. Saponin content and antioxidant capacity of each of the four fractions were measured by LC/MS analysis and ORAC(Oxygen Radical Absorbance Capacity) assay, respectively. It was found that a major portion of saponin was present in ethyl acetate and water saturated butanol fractions. When extracted by 80% ethanol, ginsenoside Rb1 and Rg1 were mostly found in crude ginseng, while ginsenoside Re and Rb1 were detected in extruded ginseng. Even though Rh1 and Rg3 were found in a very small quantity in crude ginseng, there was a significant quantity of both in extruded ginseng when extracted by 80% ethanol. Similar tendency was also observed in extruded ginseng fraction when extracted with ethyl acetate and butanol. In crude ginseng, the level of Rg1 was the highest among other ginsenosides upon extraction by ethyl acetate, while Rh1 and Rg3 were predominantly found by employing similar solvent extraction in the extruded ginseng. Also, Rg1, Re and Rb1 were also found in the extruded ginseng with small quantity. Rg1, Re and Rb1 were found in crude ginseng by butanol extraction, while Rb1 and Re were extracted from the extruded ginseng. Overall, there was no difference in the saponin content between crude ginseng and extruded ginseng when extracted by butanol and water, but twice as much of saponin was obtained by 80% ethanol extraction and 6 times more saponin were obtained in ethyl acetate fraction in the extruded ginseng. Antioxidant capacity of crude ginseng as determined by ORAC assay was higher in 80% ethanol(high in many different kinds of biological compounds) and water saturated butanol(high in polar saponin) fractions than the ethyl acetate and water fractions. No difference in antioxidant capacity was observed between crude and extruded ginseng. However, antioxidant capacity of ethyl acetate and water fractions in extruded ginseng was significantly higher than crude ginseng($P$ >0.05). All the fractions in both, crude and extruded ginseng possessed antioxidant capacity and even water fractions that contained almost no saponin had some antioxidant capacity. While determining correlation coefficient between fractions in extruded ginseng by Pearson correlation, it was observed that 80% ethanol fraction was in correlation with ethyl acetate($P$ >0.01) and ethanol($P$ >0.001) and in the case of ethylacetate, correlation was observed only with butanol fraction($P$ >0.05).