• 제목/요약/키워드: Analysis of Frequency Plane

검색결과 400건 처리시간 0.029초

Rectangular prism pressure coherence by modified Morlet continuous wavelet transform

  • Le, Thai-Hoa;Caracoglia, Luca
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.661-682
    • /
    • 2015
  • This study investigates the use of time-frequency coherence analysis for detecting and evaluating coherent "structures" of surface pressures and wind turbulence components, simultaneously on the time-frequency plane. The continuous wavelet transform-based coherence is employed in this time-frequency examination since it enables multi-resolution analysis of non-stationary signals. The wavelet coherence quantity is used to identify highly coherent "events" and the "coherent structure" of both wind turbulence components and surface pressures on rectangular prisms, which are measured experimentally. The study also examines, by proposing a "modified" complex Morlet wavelet function, the influence of the time-frequency resolution and wavelet parameters (i.e., central frequency and bandwidth) on the wavelet coherence of the surface pressures. It is found that the time-frequency resolution may significantly affect the accuracy of the time-frequency coherence; the selection of the central frequency in the modified complex Morlet wavelet is the key parameter for the time-frequency resolution analysis. Furthermore, the concepts of time-averaged wavelet coherence and wavelet coherence ridge are used to better investigate the time-frequency coherence, the coherently dominant events and the time-varying coherence distribution. Experimental data derived from physical measurements of turbulent flow and surface pressures on rectangular prisms with slenderness ratios B/D=1:1 and B/D=5:1, are analyzed.

스위칭전원의 안정도 향상에 관한 연구 -고주파 직렬공진형 컨버터를 중심으로- (A Study on the Stability Improvement of the Switching Power Supplies - Case of the High Frequency Series Resonant Converter)

  • 이윤종;김능수
    • 한국안전학회지
    • /
    • 제3권1호
    • /
    • pp.21-29
    • /
    • 1988
  • Conventional pwm switching power supply have the disadvantage some aspects of size, light weight, noise and system stability. High frequency Series Resonant Converter (SRC), described in this paper, almost improve above disadvantages. We use the state plane technique as analysis method. This technique is powerful tool which can clearly analyze the peak stress of the state variables inside the converter, Here, we can define each operation mode from frequency ratio Fsn, switching frequency to resonant frequency, and we analyze the output performance in each operation mode. To verify the theoretical analysis, we compose the actual converter, and the experimental results are compared with analysis.

  • PDF

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

Analysis of EMI Problems in Split Power Distribution Network

  • Shim, Hwang-Yoon;Kim, Ji-Seong;Yook, Jong-Gwan;Park, Han-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • 제2권2호
    • /
    • pp.75-80
    • /
    • 2002
  • Signal integrity problems and their possible solutions are addressed in this paper for split power plane of high-speed digital systems. Stitching and decoupling capacitors are proved to be very effective for reducing signal noise, ground bounce as well as electromagnetic radiation from the split power plane. Simulations based on 3D-Finite Difference Time Domain (FDTD) method are utilized for the analysis of practical high frequency multi-layered PC main board.

면내 병진 가속을 받는 복합재 사다리꼴 평판의 진동 해석 (Modal Analysis of Composite Trapezoidal Plates Undergoing In-plane Translational Acceleration)

  • 임홍석;유홍희
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1486-1491
    • /
    • 2003
  • A modeling method for the modal analysis of a composite trapezoidal plate undergoing in-plane translational acceleration is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles, fiber orientation angle and the acceleration on the modal characteristics of the plate are investigated.

고정된 원형 플레이트의 평면내 자유진동 (Free In-plane Vibration of a Clamped Circular Plate)

  • 박찬일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.836-839
    • /
    • 2005
  • The in-plane vibration response of a clamped circular plate should be predicted in many applications. Up to now, papers on the in-plane vibration of rectangular plate are published. However, analytical derivation on the in-plane vibration of the clamped circular plate is not carried out. Therefore, the in-plane vibration of the clamped circular plate is the concern of this paper. In order to derive the equations of motion for the clamped circular plate in the cylindrical coordinate, the kinetic energy and potential energy for the in-plane behavior are obtained by us ing the stress-strain-displacement expressions. Application of Hamilton's principle leads to two sets of differential equations. These displacement equations were highly coupled. It is possible to obtain a simpler set of equations by introducing Helmholtz decomposition. Substituting them into the coupled differential equations, we obtain the uncoupled equations of motion. In order to solve them, we assume that the solutions are harmonic. Then, they lead to the wave equations. Using the separation of variable, we obtain the general solutions for the equations. Based on the solutions, the displacements for r and $\theta$ direction are assumed. Finally we obtain the frequency equation for the clamped circular plate by the application of boundary conditions. The derived equation is compared with the finite element analysis for validation by using the some numerical examples.

  • PDF

시간-주파수 분석을 이용한 방사 기준 함수 구조의 최적화 (Optimization of the Radial Basis Function Network Using Time-Frequency Localization)

  • 김성주;김용택;조현찬;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.459-462
    • /
    • 2000
  • In this paper, we propose the initial optimized structure of the Radial Basis Function Network which is more simple in the part of the structure and converges more faster than Neural Network with the analysis method using Time-Frequency Localization. When we construct the hidden node with the Radial Basis Function whose localization is similar with an approximation target function in the plane of the Time and Frequency, we make a good decision of the initial structure having an ability of approximation.

  • PDF

LC 직렬형 및 LLCC 병렬형 고주파 공진형 컨버터의 회로 특성 (The characteristic of circuit of LC-type series and LLCC-Type parallel High frequency parallel resonant converter)

  • 차인수;박혜암
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1993년도 추계학술발표회논문집
    • /
    • pp.71-75
    • /
    • 1993
  • The Modeling analysis and design of a high frequency LC-type series and LLCC-type parallel resonant converter oprating in the continous conduction is presented. The state-plane diagram representation of the converter response gives and good insight into the converter operation. A set of characterisric frequency are plotted which design parameters can be obtained.

  • PDF

Energy flow finite element analysis of general Mindlin plate structures coupled at arbitrary angles

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.435-447
    • /
    • 2019
  • Energy Flow Finite Element Analysis (EFFEA) is a promising tool for predicting dynamic energetics of complicated structures at high frequencies. In this paper, the Energy Flow Finite Element (EFFE) formulation of complicated Mindlin plates was newly developed to improve the accuracy of prediction of the dynamic characteristics in the high frequency. Wave transmission analysis was performed for all waves in complicated Mindlin plates. Advanced Energy Flow Analysis System (AEFAS), an exclusive EFFEA software, was implemented using $MATLAB^{(R)}$. To verify the general power transfer relationship derived, wave transmission analysis of coupled semi-infinite Mindlin plates was performed. For numerical verification of EFFE formulation derived and EFFEA software developed, numerical analyses were performed for various cases where coupled Mindlin plates were excited by a harmonic point force. Energy flow finite element solutions for coupled Mindlin plates were compared with the energy flow solutions in the various conditions.

The Characteristics of Wide-Band/Wide-Scan E-plane Notch Phased Array Antenna

  • Kim, Jun-Yeon;So, Joon-Ho;Lee, Moon-Que;Cheon, Chang-Yul
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권5호
    • /
    • pp.194-198
    • /
    • 2003
  • A wide-band E-plane notch phased array antenna having bandwidths of 3:1 and a scan volume of $\pm$ 45 is designed considering the active element pattern (AEP) with analysis of the full structure of E-plane notch phased array antenna. Using the numerical E-plane waveguide simulator as an infinite linear array in the broadside angle, the active reflection coefficient (ARC) of the unit element is optimized in the design frequency range. To evaluate the convergence of the AEP, the simulation of full array as changing the number array is investigated, and the minimum numbers of array that have characteristics similar to the AEP of an infinite array are determined.