Journal of the Korea Society of Computer and Information
/
v.26
no.11
/
pp.1-9
/
2021
3D-NAND flash memory provides high capacity per unit area by stacking 2D-NAND cells having a planar structure. However, due to the nature of the lamination process, there is a problem that the frequency of error occurrence may vary depending on each layer or physical cell location. This phenomenon becomes more pronounced as the number of write/erase(P/E) operations of the flash memory increases. Most flash-based storage devices such as SSDs use ECC for error correction. Since this method provides a fixed strength of data protection for all flash memory pages, it has limitations in 3D NAND flash memory, where the error rate varies depending on the physical location. Therefore, in this paper, pages and layers with different error rates are classified into clusters through the K-means machine learning algorithm, and differentiated data protection strength is applied to each cluster. We classify pages and layers based on the number of errors measured after endurance test, where the error rate varies significantly for each page and layer, and add parity data to stripes for areas vulnerable to errors to provides differentiate data protection strength. We show the possibility that this differentiated data protection policy can contribute to the improvement of reliability and lifespan of 3D NAND flash memory compared to the protection techniques using RAID-like or ECC alone.
In this paper, we propose a method of character detection by analyzing image enhancement and character type to detect characters in natural images that can be acquired in everyday life. The proposed method emphasizes the boundaries of the object part using the unsharp mask in order to improve the detection rate of the area to be recognized as a character in a natural image. By using the boundary of the enhanced object, the character candidate region of the image is detected using Maximal Stable Extermal Regions (MSER). In order to detect the region to be judged as a real character in the detected character candidate region, the shape of each region is analyzed and the non-character region other than the region having the character characteristic is removed to increase the detection rate of the actual character region. In order to compare the objective test of this paper, we compare the detection rate and the accuracy of the character region with the existing methods. Experimental results show that the proposed method improves the detection rate and accuracy of the character region over the existing character detection method.
Today, with the spread of smartphones and the development of social networking services, structured and unstructured big data have stored exponentially. If we analyze them well, we will get useful information to be able to predict data for the future. Large amounts of data need to be collected first in order to analyze big data. The web is repository where these data are most stored. However, because the data size is large, there are also many data that have information that is not needed as much as there are data that have useful information. This has made it important to collect data efficiently, where data with unnecessary information is filtered and only collected data with useful information. Web crawlers cannot download all pages due to some constraints such as network bandwidth, operational time, and data storage. This is why we should avoid visiting many pages that are not relevant to what we want and download only important pages as soon as possible. This paper seeks to help resolve the above issues. First, We introduce basic web-crawling algorithms. For each algorithm, the time-complexity and pros and cons are described, and compared and analyzed. Next, we introduce the state-of-the-art web crawling algorithms that have improved the shortcomings of the basic web crawling algorithms. In addition, recent research trends show that the web crawling algorithms with special purposes such as collecting sentiment words are actively studied. We will one of the introduce Sentiment-aware web crawling techniques that is a proactive web crawling technique as a study of web crawling algorithms with special purpose. The result showed that the larger the data are, the higher the performance is and the more space is saved.
Journal of Korea Society of Industrial Information Systems
/
v.23
no.6
/
pp.67-77
/
2018
Currently, there are many problems due to the decline in school-age population. Moreover, Korea has the largest number of universities compared to the population, and the university enrollment rate is also the highest in the world. As a result, the minimum student retention rate required for the survival of each university is becoming increasingly important. The purpose of this study was to examine the effects of reducing the number of graduates of education and the social climate that prioritizes employment. And to determine what the basic direction is for students to manage the student retention rate, which can be maintained from admission to graduation, to determine the optimal input variables, Based on the input parameters, we will make associative analysis using apriori algorithm to collect training data that is most suitable for maintenance rate management and make base data for development of the most efficient Deep Learning module based on it. The accuracy of Deep Learning was 75%, which is a measure of graduation using decision trees. In decision tree, factors that determine whether to graduate are graduated from general high school and students who are female and high in residence in urban area have high probability of graduation. As a result, the Deep Learning module developed rather than the decision tree was identified as a model for evaluating the graduation of students more efficiently.
In recent years, big data analysis has been expanded to include automatic control through reinforcement learning as well as prediction through modeling. Research on the utilization of image data is actively carried out in various industrial fields such as chemical, manufacturing, agriculture, and bio-industry. In this paper, we applied NASNet, which is an AutoML reinforced learning algorithm, to DeepU-Net neural network that modified U-Net to improve image semantic segmentation performance. We used BRATS2015 MRI data for performance verification. Simulation results show that DeepU-Net has more performance than the U-Net neural network. In order to improve the image segmentation performance, remove dropouts that are typically applied to neural networks, when the number of kernels and filters obtained through reinforcement learning in DeepU-Net was selected as a hyperparameter of neural network. The results show that the training accuracy is 0.5% and the verification accuracy is 0.3% better than DeepU-Net. The results of this study can be applied to various fields such as MRI brain imaging diagnosis, thermal imaging camera abnormality diagnosis, Nondestructive inspection diagnosis, chemical leakage monitoring, and monitoring forest fire through CCTV.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.2
/
pp.7-13
/
2019
This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.
Kim, Jin-Gyoung;Cho, Sung-Jin;Choi, Un-Sook;Kim, Han-Doo;Kang, Sung-Won
The Journal of the Korea institute of electronic communication sciences
/
v.13
no.6
/
pp.1301-1308
/
2018
90/150 CA which are used as key generators of the cipher system have more randomness than LFSRs, but synthesis methods of 90/150 CA are difficult. Therefore, 90/150 CA synthesis methods have been studied by many researchers. In order to synthesize a suitable CA, the analysis of the characteristic polynomial of 90/150 CA should be preceded. In general, the characteristic of polynomial ${\Delta}_n$ of n cell 90/150 CA is obtained by using ${\Delta}_{n-1}$ and ${\Delta}_{n-2}$. Choi et al. analyzed $H_{2^n}(x)$ and $H_{2^n-1}(x)$, where $H_k(x)$ is the characteristic polynomial of k cell 90/150 CA with state transition rule <$10{\cdots}0$>. In this paper, we propose an efficient method to obtain $H_n(x)$ from $H_{n-1}(x)$ and an efficient algorithm to obtain $H_{2^n+i}(x)$ and $H_{2^n-i}(x)$ ($1{\leq}i{\leq}2^{n-1}$) from $H_{2^n}(x)$ by using this method.
For TOPS InSAR processing, high-precision image co-registration is required. We propose an image co-registration method suitable for the TOPS mode by comparing the performance of cross correlation method, the geometric co-registration and the enhanced spectral diversity (ESD) matching algorithm based on the spectral diversity (SD) on the Sentinel-1 TOPS mode image. Using 23 pairs of interferometric pairs generated from 25 Sentinel-1 TOPS images, we applied the cross correlation (CC), geometric correction with only orbit information (GC1), geometric correction combined with iterative cross-correlation (GC2, GC3, GC4), and ESD iteration (ESD_GC, ESD_1, ESD_2). The mean of co-registration errors in azimuth direction by cross correlation and geometric matching are 0.0041 pixels and 0.0016 pixels, respectively. Although the ESD method shows the most accurate result with the error of less than 0.0005 pixels, the error of geometric co-registration is reduced to 0.001 pixels by repetition through additional cross correlation matching between the reference and resampled slave image. The ESD method is not applicable when the coherence of the burst overlap areas is low. Therefore, the geometric co-registration method through iterative processing is a suitable alternative for time series analysis using multiple SAR data or generating interferogram with long time intervals.
In this study, a novel virtual reality (VR) experience environment is proposed for enabling walking adaptation of visually impaired people. The core of proposed VR environment is based on immersive walking interactions and deep learning based braille blocks recognition. To provide a realistic walking experience from the perspective of visually impaired people, a tracker-based walking process is designed for determining the walking state by detecting marching in place, and a controller-based VR white cane is developed that serves as the walking assistance tool for visually impaired people. Additionally, a learning model is developed for conducting comprehensive decision-making by recognizing and responding to braille blocks situated on roads that are followed during the course of directions provided by the VR white cane. Based on the same, a VR application comprising an outdoor urban environment is designed for analyzing the VR walking environment experience. An experimental survey and performance analysis were also conducted for the participants. Obtained results corroborate that the proposed VR walking environment provides a presence of high-level walking experience from the perspective of visually impaired people. Furthermore, the results verify that the proposed learning algorithm and process can recognize braille blocks situated on sidewalks and roadways with high accuracy.
Journal of the Korean Society of Marine Environment & Safety
/
v.23
no.7
/
pp.918-925
/
2017
Multiple reflections on exterior equipment with complex shape on naval ships cause unexpectedly high Radar Cross Section (RCS) distributions, and the directions of reradiated electromagnetic waves are hard to predict. Therefore, the optimum arrangement of exterior equipments should be considered according to the Radar Absorbing Structure (RAS) method. In this paper, the optimum arrangement for exterior equipments was determined to reduce multiple reflections and RCS even with complex shapes. The sequential descending arrangement method was used to establish an optimum arrangement algorithm. An LCS-2 type model was selected for optimum exterior equipment arrangements. In order to reduce computational cost, RCS distributions and multiple reflection path analysis of exterior equipments was carried out to select exterior equipments for optimum arrangement, and an optimum arrangement was determined to find positions with minimum RCS values. Also, the RCS reduction effect was analyzed using detectable radar range.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.