• Title/Summary/Keyword: Analysis Procedures

Search Result 3,869, Processing Time 0.031 seconds

Evaluation of Image for Phantom according to Normalization, Well Counter Correction in PET-CT (PET-CT Normalization, Well Counter Correction에 따른 팬텀을 이용한 영상 평가)

  • Choong-Woon Lee;Yeon-Wook You;Jong-Woon Mun;Yun-Cheol Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2023
  • Purpose PET-CT imaging require an appropriate quality assurance system to achieve high efficiency and reliability. Quality control is essential for improving the quality of care and patient safety. Currently, there are performance evaluation methods of UN2-1994 and UN2-2001 proposed by NEMA and IEC for PET-CT image evaluation. In this study, we compare phantom images with the same experiments before and after PET-CT 3D normalization and well counter correction and evaluate the usefulness of quality control. Materials and methods Discovery 690 (General Electric Healthcare, USA) PET-CT equiptment was used to perform 3D normalization and well counter correction as recommended by GE Healthcare. Based on the recovery coefficients for the six spheres of the NEMA IEC Body Phantom recommended by the EARL. 20kBq/㎖ of 18F was injected into the sphere of the phantom and 2kBq/㎖ of 18F was injected into the body of phantom. PET-CT scan was performed with a radioacitivity ratio of 10:1. Images were reconstructed by appliying TOF+PSF+TOF, OSEM+PSF, OSEM and Gaussian filter 4.0, 4.5, 5.0, 5.5, 6.0, 6,5 mm with matrix size 128×128, slice thickness 3.75 mm, iteration 2, subset 16 conditions. The PET image was attenuation corrected using the CT images and analyzed using software program AW 4.7 (General Electric Healthcare, USA). The ROI was set to fit 6 spheres in the CT image, RC (Recovery Coefficient) was measured after fusion of PET and CT. Statistical analysis was performed wilcoxon signed rank test using R. Results Overall, after the quality control items were performed, the recovery coefficient of the phantom image increased and measured. Recovery coefficient according to the image reconstruction increased in the order TOF+PSF, TOF, OSEM+PSF, before and after quality control, RCmax increased by OSEM 0.13, OSEM+PSF 0.16, TOF 0.16, TOF+PSF 0.15 and RCmean increased by OSEM 0.09, OSEM+PSF 0.09, TOF 0.106, TOF+PSF 0.10. Both groups showed a statistically significant difference in Wilcoxon signed rank test results (P value<0.001). Conclusion PET-CT system require quality assurance to achieve high efficiency and reliability. Standardized intervals and procedures should be followed for quality control. We hope that this study will be a good opportunity to think about the importance of quality control in PET-CT

  • PDF

Automatic Electronic Medical Record Generation System using Speech Recognition and Natural Language Processing Deep Learning (음성인식과 자연어 처리 딥러닝을 통한 전자의무기록자동 생성 시스템)

  • Hyeon-kon Son;Gi-hwan Ryu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.731-736
    • /
    • 2023
  • Recently, the medical field has been applying mandatory Electronic Medical Records (EMRs) and Electronic Health Records (EHRs) systems that computerize and manage medical records, and distributing them throughout the entire medical industry to utilize patients' past medical records for additional medical procedures. However, the conversations between medical professionals and patients that occur during general medical consultations and counseling sessions are not separately recorded or stored, so additional important patient information cannot be efficiently utilized. Therefore, we propose an electronic medical record system that uses speech recognition and natural language processing deep learning to store conversations between medical professionals and patients in text form, automatically extracts and summarizes important medical consultation information, and generates electronic medical records. The system acquires text information through the recognition process of medical professionals and patients' medical consultation content. The acquired text is then divided into multiple sentences, and the importance of multiple keywords included in the generated sentences is calculated. Based on the calculated importance, the system ranks multiple sentences and summarizes them to create the final electronic medical record data. The proposed system's performance is verified to be excellent through quantitative analysis.

A Study on the Perceptions and Current Practices in Estimating Risk Cost of Contractor's Construction Budget - Focused on Building Projects - (종합건설사 실행예산 편성 시 리스크 비용 산정에 관한 인식 및 실태에 관한 연구 - 건축공사를 중심으로 -)

  • Choi, Jeong Won;Kim, Han Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.3
    • /
    • pp.13-24
    • /
    • 2022
  • Construction projects are exposed to various types of risks, which tend to increase. The increasing risks call for contractors' more attentions to forecasting and dealing with these risks. One of the measures to deal with contractors' risks is to forecast or estimate risk cost and include it in the construction budget. Although various researches in relation to risk cost have been observed, little attention has been paid to general contractors' perceptions and current practices in estimating risk cost of construction budget. The objective of the study is to identify and discuss key characteristics and implications based on the survey and analysis of general contractors' perceptions and current practices in estimating risk cost of construction budget. The study shows that there is a gap between the perception and the practice of estimating risk cost, that is, high perception of the importance of risk cost and a relatively low level of practice. It suggests that historical cost data, guidelines and corporate-level standard procedures are required to improve the current practice in addition to sufficient time allocations for risk cost estimating. It discusses that there is a need for using sophisticated estimating techniques including bid data analytics despite a low level of the current adoption, and also proposes that research and development in the field of the sophisticated estimating techniques should be further implemented in order to increase their practicality.

Development of Truck Axle Load Distribution Model using WIM Data (WIM 자료를 활용한 화물차 축하중 분포 모형 개발)

  • Lee, Dong Seok;Oh, Ju Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.821-829
    • /
    • 2006
  • Traffic load comprise primary input to pavement design causing pavement damage. therefore it should be proceeded suitable traffic load distribution modeling for pavement design and analysis. Traffic load have been represented by equivalent single axle loads (ESALs) which convert mixed traffic stream into one value for design purposes. But there are some limit to apply ESALs to other roads because it is empirical value developed as part of the original AASHO(American Association of State Highway Officials) road test. There have been many efforts to solve these problems. Several leading country have implemented M-E(Mechanistic-Empirical) design procedures based on mechanical concept. As a result, they established traffic load quantification method using load distribution model known as Axle Load Spectra. This paper details Axle Load Spectra and presents axle load distribution model based on normal mixture distribution function using truck load data collected by WIM system installed in national highway. Axle load spectra and axle load distribution model presented in this paper could be useful for basic data when making traffic load quantification plan for pavement design, overweight vehicle permit plan and pavement maintenance cost plan.

Development of PSC I Girder Bridge Weigh-in-Motion System without Axle Detector (축감지기가 없는 PSC I 거더교의 주행중 차량하중분석시스템 개발)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Jungwhee;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.673-683
    • /
    • 2008
  • This study improved the existing method of using the longitudinal strain and concept of influence line to develop Bridge Weigh-in-Motion system without axle detector using the dynamic strain of the bridge girders and concrete slab. This paper first describes the considered algorithms of extracting passing vehicle information from the dynamic strain signal measured at the bridge slab, girders, and cross beams. Two different analysis methods of 1) influence line method, and 2) neural network method are considered, and parameter study of measurement locations is also performed. Then the procedures and the results of field tests are described. The field tests are performed to acquire training sets and test sets for neural networks, and also to verify and compare performances of the considered algorithms. Finally, comparison between the results of different algorithms and discussions are followed. For a PSC I-girder bridge, vehicle weight can be calculated within a reasonable error range using the dynamic strain gauge installed on the girders. The passing lane and passing speed of the vehicle can be accurately estimated using the strain signal from the concrete slab. The passing speed and peak duration were added to the input variables to reflect the influence of the dynamic interaction between the bridge and vehicles, and impact of the distance between axles, respectively; thus improving the accuracy of the weight calculation.

Assessment of Future Climate and Land Use Change on Hydrology and Stream Water Quality of Anseongcheon Watershed Using SWAT Model (II) (SWAT 모형을 이용한 미래 기후변화 및 토지이용 변화에 따른 안성천 유역 수문 - 수질 변화 분석 (II))

  • Lee, Yong Jun;An, So Ra;Kang, Boosik;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.665-673
    • /
    • 2008
  • This study is to assess the future potential climate and land use change impact on streamflow and stream water quality of the study watershed using the established model parameters (I). The CCCma (Canadian Centre for Climate Modelling and Analysis) CGCM2 (Canadian Global Coupled Model) based on IPCC SRES (Special Report Emission Scenarios) A2 and B2 scenarios were adopted for future climate condition, and the data were downscaled by Stochastic Spatio-Temporal Random Cascade Model technique. The future land use condition was predicted by using modified CA-Markov (Cellular Automata-Markov chain) technique with the past time series of Landsat satellite images. The model was applied for the future extreme precipitation cases of around 2030, 2060 and 2090. The predicted results showed that the runoff ratio increased 8% based on the 2005 precipitation (1160.1 mm) and runoff ratio (65%). Accordingly the Sediment, T-N and T-P also increased 120%, 16% and 10% respectively for the case of 50% precipitation increase. This research has the meaning in providing the methodological procedures for the evaluation of future potential climate and land use changes on watershed hydrology and stream water quality. This model result are expected to plan in advance for healthy and sustainable watershed management and countermeasures of climate change.

Free-vibration and buckling of Mindlin plates using SGN-FEM models and effects of parasitic shear in models performance

  • Leilson J. Araujo;Joao E. Abdalla Filho
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.283-296
    • /
    • 2023
  • Free-vibration and buckling analyses of plate problems are investigated with the aid of the strain gradient notation finite element method (SGN-FEM). As SGN-FEM employs physically interpretable polynomials in developing finite elements, parasitic shear sources, which are the cause of shear locking, can be precisely identified and subsequently eliminated. This allows two mutually complementary objectives to be defined in this work, namely, evaluate the efficiency of free-vibration and buckling results provided by corrected models, and study the severity of parasitic shear effects on plate models performance. Parasitic shear are flexural terms erroneously present in shear strain polynomials. It is reviewed here that six parasitic shear terms arise during the formulation of the four-node Mindlin plate element. Two parasitic shear terms have been identified in the in-plane shear strain polynomial while other two have been identified in each of the transverse shear strain polynomials. The element is corrected a-priori, i.e., during development, by simply removing the spurious terms from the shear strain polynomials. The computational implementation of the element in its two versions, namely, containing the parasitic shear terms (PS) and corrected for parasitic shear (SG), allows for assessments of the accuracy of results and of the deleterious effects of parasitic shear in free vibration and buckling analyses. This assessment of the parasitic shear effects is a novelty of this work. Validation of the SG model is done comparing its results with analytical results and results provided by other numerical procedures. Analyses are performed for square plates with different thickness-to-length ratios and boundary conditions. Results for thin plates provided by the PS model do not converge to the correct solutions, which indicates that parasitic shear must be eliminated. That is, analysts should not rely on refinement alone. For thick plates, PS model results can be considered acceptable as deleterious effects are really critical in thin plates. On the other hand, results provided by the SG model converge well for both thin and thick plates. The effectiveness of the SG model is established via high-accuracy results obtained in several examples. It is concluded that corrected SGN-FEM models are efficient alternatives for free-vibration and buckling analysis of Mindlin plate problems, and that precise elimination of parasitic shear is a requirement for sound analyses.

The Impact Factors That Affect Powerlessness of the Elderly (노인의 무력감에 영향을 미치는 요인)

  • Kim, Kwuy-Bun;Cho, Sung Eun;Lee, Yun Jung
    • 한국노년학
    • /
    • v.32 no.2
    • /
    • pp.487-499
    • /
    • 2012
  • The purpose of this study is to find out the degree of powerlessness factors among elderly and by examining the variables(perceived health status, ability of daily living activity, self-esteem, depression, family support, loneliness) which affect such factors. By searching for methods to improve the quality of life for the elderly, efficient nursing procedures can be developed, thereby leading to successful aging. For the study, we purposively collected 300 elderly above the age of 65, residing in the areas of Seoul, Inchon, and Daejeon. 266 samples, survived the data screening, were analyzed by reliability analysis, Spearman correlation, and a multiple regression. As the results, first, the correlated factors of the elderly's powerlessness included depression(r=.597, p<.01), loneliness (r=.423, p<.01), ability of daily living activity(r=.374, p<.01), perceived health status(r=-.304, p<.01), family support(r=-.384, p<.01), and self-esteem(r=-.420, p<.01). Second, factors influencing of powerlessness of them were to show in order of depression(β=.373), loneliness(β=.265), spouse(β=.099), family support(β=.090), monthly allowances(β=.013), these variables accounted for 45.7% of the variance of the elderly's powerlessness. Depression showed to be the most important of the powerlessness factors for the elderly. These findings suggest that nursing researchers need to consider important factors affecting the elderly's powerlessness and nursing interventions focusing on the issues need to be developed.

Analysis of Research Trends of the Information Security Audit Area Through Literature Review (문헌 분석을 통한 정보보안 감사 분야의 국내 및 국제 연구동향 분석)

  • So, Youngjae;Hwang, Kyung Tae
    • Informatization Policy
    • /
    • v.30 no.4
    • /
    • pp.3-39
    • /
    • 2023
  • With the growing importance of information/information system, information security is emphasized, and the significance of information security audit as a tool for maintaining the proper security level is increasing as well. The objectives of the study are to identify the overall research trends and to propose future research areas by analyzing domestic and overseas research in the area. To achieve the objectives, 103 research papers were analyzed based on both general and subject-related criteria. The following are the major research results : In terms of research approach, more empirical studies are needed; For subject "Auditor," studies to develop a framework for related variables (e.g., capability) are needed; For subject "Audit Activities/Procedures," future research should focus on the process/results of detailed audit activities; Future domestic research for "Audit Areas" should look for the new technology/industry/security areas covered by foreign studies; For "Audit Objective/Impact," studies to define the variables (e.g., performance and quality) systematically and comprehensively are needed; For "Audit Standard/Guidelines," research on model/guideline needs to be continued.

Neutrophil to Lymphocyte Ratio and Serum Biomarkers : A Potential Tool for Prediction of Clinically Relevant Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage

  • Osman Kula;Burak Gunay;Merve Yaren Kayabas;Yener Akturk;Ezgi Kula;Banu Tutunculer;Necdet Sut;Serdar Solak
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.681-689
    • /
    • 2023
  • Objective : Subarachnoid hemorrhage (SAH) is a condition characterized by bleeding in the subarachnoid space, often resulting from the rupture of a cerebral aneurysm. Delayed cerebral ischemia caused by vasospasm is a significant cause of mortality and morbidity in SAH patients, and inflammatory markers such as systemic inflammatory response index (SIRI), systemic inflammatory index (SII), neutrophil-to-lymphocyte ratio (NLR), and derived NLR (dNLR) have shown potential in predicting clinical vasospasm and outcomes in SAH patients. This article aims to investigate the relationship between inflammatory markers and cerebral vasospasm after aneurysmatic SAH (aSAH) and evaluate the predictive value of various indices, including SIRI, SII, NLR, and dNLR, in predicting clinical vasospasm. Methods : A retrospective analysis was performed on a cohort of 96 patients who met the inclusion criteria out of a total of 139 patients admitted Trakya University Hospital with a confirmed diagnosis of aSAH between January 2013 and December 2021. Diagnostic procedures, neurological examinations, and laboratory tests were performed to assess the patients' condition. The Student's t-test compared age variables, while the chi-square test compared categorical variables between the non-vasospasm (NVS) and vasospasm (VS) groups. Receiver operating characteristic (ROC) curve analyses were used to evaluate the diagnostic accuracy of laboratory parameters, calculating the area under the ROC curve, cut-off values, sensitivity, and specificity. A significance level of p<0.05 was considered statistically significant. Results : The study included 96 patients divided into two groups : NVS and VS. Various laboratory parameters, such as NLR, SII, and dNLR, were measured daily for 15 days, and statistically significant differences were found in NLR on 7 days, with specific cut-off values identified for each day. SII showed a significant difference on day 9, while dNLR had significant differences on days 2, 4, and 9. Graphs depicting the values of these markers for each day are provided. Conclusion : Neuroinflammatory biomarkers, when used alongside radiology and scoring scales, can aid in predicting prognosis, determining severity and treatment decisions for aSAH, and further studies with larger patient groups are needed to gain more insights.