• Title/Summary/Keyword: Analog rotor position errors

Search Result 3, Processing Time 0.018 seconds

Signal Compensation for Analog Rotor Position Errors due to Nonideal Sinusoidal Encoder Signals

  • Hwang, Seon-Hwan;Kim, Dong-Youn;Kim, Jang-Mok;Jang, Do-Hyun
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.82-91
    • /
    • 2014
  • This paper proposes a compensation algorithm for the analog rotor position errors caused by nonideal sinusoidal encoder output signals including offset and gain errors. In order to achieve a much higher resolution, position sensors such as resolvers or incremental encoders can be replaced by sinusoidal encoders. In practice, however, the periodic ripples related to the analog rotor position are generated by the offset and gain errors between the sine and cosine output signals of sinusoidal encoders. In this paper, the effects of offset and gain errors are easily analyzed by applying the concept of a rotating coordinate system based on the dq transformation method. The synchronous d-axis signal component is used directly to detect the amplitude of the offset and gain errors for the proposed compensator. As a result, the offset and gain errors can be well corrected by three integrators located on the synchronous d-axis component. In addition, the proposed algorithm does not require any additional hardware and can be easily implemented by a simple integral operation. The effectiveness of the proposed algorithm is verified through several experimental results.

Ultra Precise Position Estimation of Servomotor using Analog Quadrature Encoder

  • Kim Ju-Chan;Hwang Seon-Hwan;Kim Jang-Mok;Kim Cheul-U;Choi Cheol
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.139-145
    • /
    • 2006
  • This paper describes the ultra precise position estimation of a servomotor using a sinusoidal encoder based on Arcsine Interpolation Method for the cost reduction of circuit design. The amplitude and offset errors of the sinusoidal encoder output signals, from the encoder itself and analog signal processing procedures, are effectively compensated and on-line tuned by utilizing a low cost programmable differential amplifier without any special expensive equipment. For a theoretical evaluation of the practical resolution of this system, the relationship between the amplitude of ADC(Analog to Digital Converter) input signal errors and the anticipated resolution is also addressed. The performance of the proposed method is verified by comparing it with speed control characteristics of the servomotor driving system using a digital incremental 50,000ppr encoder in the experiments.

Modeling and Application Research of Zero Crossing Detection Circuit (Zero Crossing Detection 회로 Modeling 및 응용연구)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.143-148
    • /
    • 2020
  • In the case of a system that detects and controls the phase of an alternating voltage, the analog control method compensates the phase offset part by filtering for the detected phase and applies it to the control. However, in the digital control method, precise control cannot be achieved due to an error between the operating frequency of the microprocessor or the microcontroller and the input phase time when controlled using such phase detection. In general, when the method used is a certain time, the accumulated error is compensated and adjusted at random. To solve this problem, a method of detecting a zero point in real time and compensating for the operating frequency of the microprocessor is needed. Therefore, the research to be performed in this paper to reduce these errors and apply them to precise digital control is as follows. 1) Research on how to implement Zero Crossing Detection algorithm through simulation modeling to compensate the zero point to match the operating frequency through detection. 2) A study on the method of detecting zero points in real time through the Zero Crossing Detection design using a microcontroller and compensating for the operating frequency of the microprocessor. 3) A study on the estimation of the rotor position of BLDC motors using the Zero Crossing Detection circuit.