• Title/Summary/Keyword: Anaerobic reductive dechlorination

Search Result 25, Processing Time 0.025 seconds

Anaerobic dechlorinating enrichment culture on tetrachloroethene (PCE) (PCE 탈염소화를 위한 혐기성배양)

  • Kim, Byung-Hyuk;Baek, Kyung-Hwa;Sung, Youl-Boong;Choi, Gang-Kook;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.185-185
    • /
    • 2007
  • Starting at the beginning q the 20th century, increasing amounts of tetrach1oroethene (PCE) and trichloroethene (TCE)were manufactured due to the extensive use of these compounds in industry, in the military, and in private households, mainly as nonflammable solvents. This widespread use, along with careless handling and storage, are among the most serious contaminants of soil, sediment and groundwater. Highly chlorinated ethenes are typically not degraded through oxygenation by aerobic bacteria Since complete reductive dechlorination of PCE and TCE to ethene (ETH) has been observed in anaerobic enrichment culture, anaerobic dehalorespiring bacteria have received increased attention in the last decade. Under anaerobic conditions, these compounds con be reductively dehalogenated to less-chlorinated ethenes or innocuous ethene by microorganism through dehalorespiration. We have been studying anaerobic enrichment culture which used lactate as the electron donor for reductive dechlorination of PCE to ETH the anaerobic mixed microbial culture was enriched from the sediment sample taken from site contaminated with PCE. PCE was consistently and completely converted to ethene. In addition, the accumulation of intermediate products such as 1,2-ds-dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the anaerobic mixed microbial culture. the established dechlorinating enrichment culture was analyzed by DGGE using primers specific to DefrJ1ococcoides 16S rRNA gene sequences. In conclusion, we established the PCE dechlorinating enrichment culture and confirmed the existence of Dehalococcoides in an enrichment culture.

  • PDF

Influence of Transition-Metal Cofactors on the Reductive Dechlorination of Polychlorinated Biphenyls (PCBs)

  • Kwon, O-Seob;Kim, Young-Jin;Cho, Kyung-Je;Lee, Jin-Ae;Kim, Young-Eui;Hwang, In-Young;Kwon, Jae-Hyun
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.189-195
    • /
    • 2003
  • To enhance the reductive dechlorination of polychlorinated biphenyls (PCBs) under anaerobic conditions, we examined the adjunctive effects of cobalt (Co) and nickel (Ni), which are the central metals of transition-metal cofactors of coenzyme F$\_$430/ and vitamin B$\_$12/, respectively, on the dechlorination of Aroclor 1248. After 32 weeks of incubation, the average numbers of chlorines per biphenyl in culture vials supplemented with 0.2, 0.5, and 1.0 mM of Co reduced from 3.88 to 3.39, 2.92, and 3.28, respectively. However, the numbers of chlorine after supplementing with Ni decreased from 3.88 to 3.43, regardless of the Ni concentrations. The observed congener distribution patterns of all vials with different conditions were similar to the pattern produced by the dechlorination process of H' after 21 weeks of incubation, and these patterns were unchanged up to week 32, except for vials supplemented with 0.5 and 1.0 mM of Co. In vials containing 0.5 mM of Co, meta-rich congeners, such as 25/ 25-,24/25-, and 25/23-chlorobiphenyls (CBPs), which were found as accumulated products of dechlorination in other conditions, were further dechlorinated, and 25/2-, 24/2-, and 2/2-CBPs were concomitantly increased after 32 weeks of incubation. In this case, the congener distribution was similar to the dechlorination pattern of process M. From these results, we suggested that the enrichment of cultures with Co might stimulate the growth of specific populations of meta-dechlorinators, and that populations might promote a change in the dechlorination process from H' to M, which is known to be less effective on the dechlorination of the more highly chlorinated congeners of PCBs.

Analysis of Microbial Community During the Anaerobic Dechlorination of Tetrachloroethylene (PCE) in Stream of Gimpo and Inchon Areas (경기도 김포, 인천 서구지역 소하천의 PCE 탈염소화 군집의 선별 및 다양성 분석)

  • Kim, Byung-Hyuk;Baek, Kyung-Hwa;Cho, Dea-Hyun;Sung, Youl-Boong;Ahn, Chi-Yong;Oh, Hee-Mock;Koh, Sung-Cheol;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.140-147
    • /
    • 2009
  • In this study, anaerobic enrichment cultivation was performed with the sediments from the Gimpo and Inchon areas. Lactate as an electron donor and PCE as an electron acceptor was injected into the serum bottle with an anaerobic medium. After the incubation of 8 weeks, the reductive dechlorination of PCE was observed in 7 sites among 16 sites (43%). Three enrichment cultures showed completely dechlorination of PCE to ethene, while four enrichment culture showed transformation of PCE to cis-DCE. The bacterial community structure was analyzed by PCR-DGGE. Dechlorinating bacteria were detected by species-specific primers. The dominant species in seven anaerobic enrichments were found to belong to the genus of Dehalococcoides sp. and Geobacter sp., and Dehalobacter sp.

The Effect of Electron Donor on Reductive Dechlorination of Chlorophenols (염소계페놀의 환원적 탈염소화에서의 전자공여체의 영향)

  • 박대원;김성주박정극
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.211-217
    • /
    • 1996
  • Batch experiments were conducted to investigate the effect of electron donor on reductive dechlorination of 2,4,5-trichlorophenol by a methanogenic consortium. The methanogenic consortium was obtained from the anaerobic digester of a municipal wastewater treatment plant. The batch reactor containing methanogenic consortium was spiked with 2,4,6-trichlorophenol at 10 mg/$\ell$. Acetate, ethanol, glucose of methanol, each was added as an electron donor for methanogenic consortium. During the course of the experiments liquid samples were taken from the batch reactor to measure dechlorination rate and find the dechlorination pathway of 2,4,6-trichlorophenol. After incubation 2,4,6-trichlorophenol was first dechlorinated to 2,4-dichlorophenol and then to 4-chlorophenol. Phenol was not detected in the batch reactor the highest rate of dechlorination of 2,4,6-trichlorophenol was observed when ethanol was used as an electron donor.

  • PDF

The Identification and Anlaysis of C. bifermentans DPH, an Anaerobic Bacterium that can Dechlorinate by Reductive Dechlorination of Tetrachloroethylene or Other Halogenated Aliphatic Compounds (PCE 포함한 각종 유기염소화합물 분해능을 보유한 C. bifermentans DPH 균주의 동정 및 성질)

  • Chang, Young-Cheol;Jeong, Kweon;Yoo, Young-Sik;Kim, Min-Young;Shin, Jae-Young
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.6-13
    • /
    • 2000
  • PCE(tetrachloroethylene) 분해능을 보유한 그람 양성, 내생포자 형성의 혐기성균이 일본 기후현의 한 전자제품공장으로부터 분리되었다. 이 균은 생화학적 특성 및 16S rRNA 분석결과에 의하여 C. bifermentans인 것을 거쳐 cDCE(cis-1,2-dichloroethylene)로 전환되었다. 전자공여체로서 효모엑기스는 PCE 분해에 있어 가장 효과적이었으며 효모엑기스를 공급한 조건에서의 PCE 탈염소화 속도는 0.41 $\mu$mol/h.mg protein 이었다. 한편 본 균주는 PCE 뿐만 아니라 각종 유기염소화합물에 대해서도 분해능을 보유하고 있는 신종의 PCE 분해균으로서 각종 유기염소화합물에 오염된 지하수 및 토양에서의 In situ bioremediation 적용에 있어 유용할 것으로 기대된다.

  • PDF

Effect of Minerals surface characteristics On Reduction Dehalogenation of chlorination solvents in water-FeS/FeS$_2$ system

  • 김성국;허재은;박세환;장현숙;박상원;홍대일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.108-111
    • /
    • 2000
  • FeS/FeS$_2$ minerals have been known to be potentially useful reductant to the removal of common organic contaminants in groundwater and soil. This research is aimed at improving our understanding of factors affecting the pathways and rates of reductive transformation of Hexachloroethane by catalytical iron minerals in natural system. Hexachloroethane is reduced by FeS/FeS$_2$ minerals under anaerobic condition to tetrachloroethylene and trichloroethylene with pentachloroethyl radical as the intermediate products. The kinetics of reductive transformations of the Hexachloroethane have been investigated in aqueous solution containing FeS, FeS$_2$. The proposed reduction mechanism for the adsorbed nitrobenzene involves the electron donor-acceptor complex as a precursor to electron transfer. The adsorbed Hexachloroethane undergo a series of electron transfer, proton transfer and dehydration to achieve complete reduction. It can be concluded that the reductive transformation reaction takes place at surface of iron-bearing minerals and is dependent on surface area and pH. Nitrobenzene reduction kinetics is affected by reductant type, surface area, pH, the surface site density, and the surface charge. FeS/FeS$_2$-mediated reductive dechlorination may be an important transformation pathway in natural systems.

  • PDF

Estimating anaerobic reductive dechlorination of chlorinated compounds in groundwater by indigenous microorganisms

  • Park, Sunhwa;Kim, Deok Hyun;Yoon, JongHyun;Kwon, JongBeom;Choi, Hyojung;Kim, Ki-In;Han, Kyungjin;Kim, Moonsu;Shin, Sun-Kyoung;Kim, Hyun-Koo
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.85-95
    • /
    • 2022
  • Tetrachloroethylene (PCE) and trichloroethylene (TCE), critical pollutants to human health and groundwater ecosystems, are managed by groundwater quality standards (GQS) in South Korea. However, there are no GQSs for their by-products, such as cis-dichloroethylene (DCE) and vinyl chloride (VC) produced through the dechlorination process of PCE and TCE. Therefore, in this study, we monitored PCE, TCE, cis-DCE, and VC in 111 national groundwater wells for three years (2016 to 2018) to evaluate their distributions, a biological dechlorination possibility, and human risk assessment. The detection frequency of them was 30.2% for PCE, 45.1% for TCE, 43.9% for cis-DCE and 13.4% for VC. The four chlorinated compounds were commonly detected in 21 out of 111 wells. In the results of statistical analysis with 21 wells data, DO and ORP also had a negative correlation with four organic chlorinated compounds, while EC and sulfate has a positive correlation with the compounds. This indicates that the 21 wells were relatively met with suitable environments for a biological dechlorination reaction compared to the other wells. Finally, cis-DCE had a non-carcinogenic risk of 10-1 and the carcinogenic risk of VC was 10-6 or higher. Through this study, the distribution status of the four chlorinated compounds in groundwater in South Korea and the necessity of preparing plans to manage cis-DCE and VC were confirmed.

SYNTHESIS OF NANO-SIZED IRON FOR REDUCTIVE DECHLORINATION. 2. Effects of Synthesis Conditions on Iron Reactivities

  • Song, Ho-Cheol;Carraway, Elizabeth R.;Kim, Young-Hun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.174-180
    • /
    • 2005
  • Nano-sized iron was synthesized using borohydride reduction of $Fe^{3+}$ in aqueous solution. A wide range of synthesis conditions including varying concentrations of reagents, reagent feeding rate, and solution pH was applied in an aqueous system under anaerobic condition. The reactivity of nano-sized iron from each synthesis was evaluated by reacting the iron with TCE in batch systems. Evidence obtained from this study suggest the reactivity of iron is strongly dependent on the synthesis solution pH. The iron reactivity increased as solution pH decreased. More rapid TCE reduction was observed for iron samples synthesized from higher initial $Fe^{3+}$ concentration, which resulted in lower solution pH during the synthesis reaction. Faster feeding of $BH_4^-$ solution to the $Fe^{3+}$ solution resulted in lower synthesis solution pH and the resultant iron samples gave higher TCE reduction rate. Lowering the pH of the solution after completion of the synthesis reaction significantly increased reactivity of iron. It is presumed that the increase in the reactivity of iron synthesized at lower pH is due to less precipitation of iron (hydr)oxides or less surface passivation of iron.

Reductive dechlorination of tetrachloroethylene by bimetallic catalysts on hematite in the presence of hydrogen gas

  • Choi, Kyunghoon;Lee, Nara;Lee, Woojin
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.151-162
    • /
    • 2014
  • Among the combination of 4 different second metals and 3 different noble metals, Ni 10%-Pd 1%/hematite (Ni(10)-Pd(1)/H) showed best tetrachloroethylene (PCE) removal (75.8%) and production of non-toxic products (39.8%) in closed batch reactors under an anaerobic condition. The effect of environmental factors (pH, contents of Ni and Pd in catalyst, and hydrogen gas concentration) on the reductive dechlorination of PCE by Pd-Ni/hematite catalysts was investigated. PCE was degraded less at the condition of Ni(5)/H (13.7%) than at the same condition with Ni(10)/H (20.6%). Removals of PCE were rarely influenced by the experimental condition of different Pd amounts (Pd(1)/H and Pd(3)/H). Acidic to neutral pH conditions were favorable to the degradation of PCE, compared to the alkaline condition (pH 10). Increasing Ni contents from 1 to 10% increased the PCE removal to 89.8% in 6 hr. However, the removal decreased to 74.2% at Ni content of 20%. Meanwhile, increasing Pd contents to 6% showed no difference in PCE removal at Pd content of more than 1%. Increasing H2 concentration increased the removal of PCE until 4% H2 which was maximumly applied in this study. Chlorinated products such as trichloroethylene, 1,1-dichloroethylene, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride were not observed while PCE was transformed to acetylene (24%), ethylene (5%), and ethane (11%) by Ni(10)-Pd(1)/H catalyst in 6hr.

The Study of TCE Dechlorination using Geobacter lovleyi with Slow Release Substrate Applied (Slow Release Substrate를 이용한 Geobacter lovleyi의 TCE 탈염소화 연구)

  • Cha, Jae Hun;An, Sang Woo;Park, Jae Woo;Chang, Soon Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.53-59
    • /
    • 2012
  • This study investigated characteristics of decomposition of tetrabutoxysilane (TBOS) as a slow release substrate (SRS) and on effect of TBOS decompostion compounds (acetate and butylate) for anaerobic dechlorination of trichloroethylene (TCE). In the batch experiment, TCE, cis-dichloroethene (cis-DCE), 1-butanol and TBOS were analysed by GC/FID and acetate and butylate were measured by HPLC. 1M of TBOS transferred and accumulated 4M of 1-butanol by abiotically hydrolysis reaction. The hydrolysis rate was in a range of 0.186 ${\mu}M/day$. On other hand, 1-butanol fermented to butyrate and acetate with indigenous culture from natural sediments. This results showed that TBOS could be used a slow release substrate in the natural sites. The dechlorinated potential of TCE with acetate and butyrate was increased with a decreasing initial TCE concentrations. In addition, first order coefficients of dechlorination with acetate as electron donor was higher then that with butyrate. It is because that dechlorination of Geobacter lovleyi was affected by substrate affinity, biodegradability and microbial acclimation on various substrates. However, dechlorinated potential of Geobacter lovleyi was decreased with accumulation cis-DCE in the anaerobic decholoronation process. The overall results indicated that SRS with Geobacter lovleyi might be a promising material for enhancing dechlorination of TCE on natural site and cis-DCE should be treated by ZVI as reductive material or by coexisting other dechlorinated bacteria.