• Title/Summary/Keyword: Anaerobic performance

Search Result 244, Processing Time 0.026 seconds

Effects of Thermal Pretreatment Temperature on the Solubilization Characteristics of Dairy Manure for Dry Anaerobic Digestion

  • Ahn, Heekwon;Lee, Seunghun;Kim, Eunjong;Lee, Jaehee;Sung, Yongjoo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.127-132
    • /
    • 2014
  • The effect of thermal pretreatment conditions on hydrolysis characteristics of dairy manure and sawdust mixtures has been evaluated. Thermal pretreatment temperature varied between 35 and $120^{\circ}C$ and the period of the treatment changed between 30 and 1440min (24h). As thermal pretreatment temperature and duration increased, organic material solublization rates were improved. Maximum solubilizations of chemical oxygen demand (SCOD), carbohydrates, and volatile fatty acids(VFAs) were observed when dairy manure treated for one day at $120^{\circ}C$. Although one day treatment duration at $120^{\circ}C$ showed the highest SCOD, soluble carbohydrates, and VFAs concentration, its hydrolysis rate was only about 12%. The results reveal that the thermal pretreatment conditions tried in this study are not enough to solubilize the organic matter contained in dairy manure and sawdust mixtures. In order to maximize hydrolysis performance, the further research needs to determine the factors influences on organic material solubilization in addition to thermal pretreatment temperature and duration.

Biogas-Microturbine Distributed Generation Developement at Gong-Ju Public Livestock Wastewater Treatment Facility (공주 축산폐수공공처리장에서의 바이오가스-마이크로터빈 분산발전시스템 개발)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Lee, Ki-Chul;Kang, Ho;Rhim, Sang-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.229-234
    • /
    • 2008
  • Korea Electric Power Corporation (KEPCO) has started the nation's first biogas-microturbine project in the city of Gongju as an effort to encourage the utilization of wasted biogas containing useful energy source in the form of $CH_4$. The goal of the project is to set up the biogas microturbine co-generation system for utilizing biogas as an energy source and improving the economics of the wastewater treatment plant. Wastewater treatment processes were investigated in depth to find improvement possibility. Changes in internal recirculation ratio and pre-treatment degree are needed to optimize plant operation and biogas production. Biogas pre-treatment system satisfies Capstone's fuel condition requirement with the test result of 99.9% and 90.2% of hydrogen sulphide and ammonia is removal performance. Installation of microturbine and manufacture of heat exchanger to warm anaerobic digester has been done successfully. Expected economic profit produced by the system is coming from energy saving including electricity 115,871kWh/year and heat contained in exhaust gas 579GJ/year.

  • PDF

A Study on Advanced Municipal Wastewater Treatement by Daewoo Nutrients Removal (DNR) System (DNR 시스템에 의한 하수(下水)의 고도처리(高度處理)에 관한 연구(硏究))

  • Park, Myung-Gyun;Chang, Yun-Seok;Park, Chul-Hwi;Park, Chil-Lim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.115-123
    • /
    • 1995
  • The purpose of this study is to investigate the characteristics and performance of nitrogen and phosphorus removal system, Daewoo Nutrients Removal(DNR) system, and to find out the operating parameter for the system. During the study, $10m^3$ pilot plant was operated for the demonstration experiment and the primary effluent was taken from K domestic sewage treatment plant. The TN in the influent had been removed to approximately 70% through the nitrfication in the oxic tank and the denitrfication in the anoxic tank and the $PO_4-P$ and TP in the influent had been removed to 85% and 83% through anaerobic reaction and oxic reaction. The BOD and SS removal rate were 85 to 95% through the system. As the results, the values of effluent BOD, SS and slouble phosphorus were lower than A/O and $A^2/O$ processes. The SPRR (specific phosphorus release rate) at the anaerobic state of DNR system was ranged from 2.2 to 2.6mg SP/g VSS/h. The nutrient removal efficieny of the DNR system in view of the characteristics of the domestic sewage was higher than the pre-established A/O and $A^2/O$ processes. Finally, we believe that the DNR system was superior to the processes deveolped recently.

  • PDF

Effective Treatment of Swine Manure with Chinese Cabbage Silage through Two Serial Anaerobic Digestion (돈분과 배추사일리지를 이용한 2조 혐기소화의 효과적인 처리)

  • Kim, Sang-Hun;Kafle, Gopi Krishna
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.53-63
    • /
    • 2010
  • The performance of two serial completely stirred tank reactors (CSTRs) for treatment of swine manure (SM) with Chinese cabbage silage (CCS) was studied. The two CSTRs of 41 liters each were connected in series and first reactor was fed swine manure with Chinese cabbage silage in 3:1 proportion by VS basis. The FOS/TAC, methane content (%) and pH were utilized as the parameters for the digester stability control. The FOS/TAC value was found to be effective indicator for instant digester condition. The stability of reactors can be obtained with the FOS/TAC value up to 1.0 with accumulation of FOS value below 10,000 mg/L. Material exchange method was effective in transferring the excess volatile fatty acids (VFA) from the first reactor to the second one and maintaining stability in both the reactors. The biogas yield and the methane yield was 0.55-0.61 and 0.41-0.42 L/g VS fed, respectively, at organic loading rate (OLR) of 2.2-2.6 g VS/L with total HRT of 32 days.

Effect of Increasing Amounts of Ammonium Nitrogen Induced by Consecutive Mixture of Poultry Manure and Cattle Slurry on the Microbial Community during Thermophilic Anaerobic Digestion

  • Alsouleman, Khulud
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1993-2005
    • /
    • 2019
  • Thermophilic anaerobic digestion (TAD) is characterized by higher biogas production rates as a result of assumedly faster microbial metabolic conversion rates compared to mesophilic AD. It was hypothesized that the thermophilic microbiome with its lower diversity than the mesophilic one is more susceptible to disturbances introduced by alterations in the operating factors, as an example, the supply of nitrogen-rich feedstock such as poultry manure (PM). Laboratory scaled TAD experiments using cattle slurry and increasing amounts of PM were carried out to investigate the (in-) stability of the process performance caused by the accumulation of ammonium and ammonia with special emphasis on the microbial community structure and its dynamic variation. The results revealed that the moderate PM addition, i.e., 25% (vol/vol based on volatile substances) PM, resulted in a reorganization of the microbial community structure which was still working sufficiently. With 50% PM application, the microbial community was further stepwise re-organized and was able to compensate for the high cytotoxic ammonia contents only for a short time resulting in consequent process disturbance and final process failure. This study demonstrated the ability of the acclimated thermophilic microbial community to tolerate a certain amount of nitrogen-rich substrate.

A Study on Treatment Characteristics of the Phenol and Catechol using on Anaerobic Fluidized Bed Reactor (혐기성 유동층 반응기를 이용한 페놀과 카테콜의 처리특성에 관한 연구)

  • 김민수;박동일;홍종순;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 1998
  • This study was carried to investigate the treatment characteristics of the phenol and catechol with an anaerobic fluidized bed reactor(AFBR) having a dimension of 9 cm i.d. and 1.25 m height. The reactor was operated at $35\pm 1\circ$C. The COD concentration of the effluent, the gas production rate and the composition of gas were measured to determine the performance of the AFBR as the hydraulic retention time(HRT) was decreased from 2 days to i day at 600 mg/l of the phenol and catechol concentration. Stable treatment of the phenol wastewater could be achieved with the AFBR at 18 days but the catechol wastewater couldn't be. At HRT 2 days, the phenol wastewater showed the COD reduction efficiency of 93% and the gas production of 2.7 l/day and the catechol wastewater was obtained the COD reduction efficiency of 82% and the gas production of 0.72 l/day. Also at HRT 1 day the phenol and catechol wastewater showed the COD reduction efficiency of 95% and 73% and the gas production of 4.0 l/day and 1.25 l/day, respectively.

  • PDF

Nutrient Removal in an Advanced Treatment Process using BIO-CLOD (BIO-CLOD를 이용한 고도처리공정에서의 영양염류 제거)

  • Park, Wan-Cheol;Lee, Mi-Ae;Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.4
    • /
    • pp.322-329
    • /
    • 2014
  • Objectives: The purpose of this study was to investigate the effect of BIO-CLOD on advanced wastewater treatment for enhanced removal efficiency and meeting the stringent discharge water requirements of wastewater treatment plants. Methods: Two experimental apparatuses consisting of anaerobic, anoxic and aeration tanks were operated. One included a BIO-CLOD cultivation tank. Organic and nutrient parameters and removal efficiency were analyzed by pH, BOD, CODcr, SS, T-N and T-P. Results: The average removal efficiencies of BOD, COD and SS from the apparatus with BIO-CLOD tank installation were 95.5%, 88.6% and 92.9%, respectively, and these were higher than the results from the apparatus without BIO-CLOD. The average TP removal efficiency with BIO-CLOD tank marked 56.0%, higher than the 47.3% from the apparatus without one. BIO-CLOD showed a higher performance for TN removal at 49.6%, compared to the result without BIO-CLOD of 34.3% Conclusion: By reaction with BIO-CLOD, ammonia removal was effective in the aeration tank, as was phosphorus release in the anaerobic tank. Phosphorus luxury uptake and nitrification in aeration tank proceeded smoothly. The application of BIO-CLOD can improve the decrease of odor and settleability of activated sludge in a wastewater treatment plant, as well as increase the removal efficiency of organic and nutrient materials in water.

Effects of Reactor Configuration on Upflow Anaerobic Sludge Digestion (반응조 형상이 상향류 혐기성 슬러지 소화에 미치는 영향)

  • Kim, Daeyoung;Kim, Heejun;Park, Kiyoung;Choi, Younggyun;Chung, Taihak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.550-558
    • /
    • 2003
  • Digestion of primary sludge was conducted to evaluate the effects of reactor configuration using UAD, CUAD, TPAD, and semi-continuos CSTR. Highest VSS reduction and gas production were obtained in CUAD at all HRT. More efficient digestion was accomplished in upflow digesters compared to TPAD and CSTR. Higher thickening of solids in reactor and longer solids retention were main reasons for the enhanced digestion in CUAD and UAD. Performance based on the SRT of CUAD was nearly identical to that of UAD. However, those of TPAD and CSTR were lower than that of CUAD. Particulate and soluble organics in upflow reactors were well adsorbed due to secreted extracellular polymeric substances from the sludge granules. These might result in close proximity of microorganisms and substrates and enhanced hydrolysis. Additionally, diverse anaerobic microorganisms and neutral pH in upflow reactor could induce more activity of hydrolytic enzymes and sludge granules might offer lower thermodynamic energy state. While, excessive mixing in CSTR could break conglomerates of enzymes and substrates into fine particles, which resulted in lowered hydrolysis. Low pH level in acid fermenter of TPAD lowered hydrolysis of the particulate substrates.

Nitrate Removal in a Packed Bed Reactor Using Volatile Fatty Acids from Anaerobic Acidogenesis of Food Wastes

  • Lim, Seong-Jin;Ahn, Yeong-Hee;Kim, Eun-Young;Chang, Ho-Nam
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.538-543
    • /
    • 2006
  • A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from $0.50\;to\;1.01\;kg\;N/m^{3}{\cdot}d$, the PBR exhibited $100{\sim}98.8%\;NO_{3}^{-}-N$ removal efficiencies and nitrite concentrations in the effluent ranged from $0\;to\;0.6\;NO_{2}^{-}-N\;mg/L$. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than $1.01\;kg\;N/m^{3}{\cdot}d$, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.

A Study on Biological Wastewater Treatment using the Combination of Anaerobic and Two Intermittent Aeration Tanks Operated Alternately: A Pilot-scale Study (혐기 및 2단 교호(交互) 간헐포기조를 이용한 하수고도처리에 관한 연구: 파일럿 규모의 실험결과를 중심으로)

  • Choi, Yong-Su;Hong, Seok-Won;Kwon, Gihan
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.269-274
    • /
    • 2004
  • The performance of a newly designed wastewater treatment process equipped with an anaerobic and two intermittent aeration tanks operated alternately was investigated. During the experimental period, several types of cyclic operating schedules with different aeration and non aeration time were examined for the optimization. At all modes, the removals of organic matter and SS were highly achieved. With respect to T-N removal, however, the cycle length for aeration on/off affected the efficiencies. At the optimal operating mode, the ORP bending point indicating the disappearance of nitrate was observed. Considering the influent wastewater characteristics and cyclic operating schedules, it can be suggested that T-P removal is much more BOD/T-P ratio and/or its load dependant rather than the aeration on/off time. The results obtained from pilot-scale test showed the competitive advantage of this alternating process through an omission of nitrate recycle and operational flexibility against influent load variations when comparing with other continuous flow processes.