• Title/Summary/Keyword: Anaerobic culture

Search Result 276, Processing Time 0.029 seconds

Photoproduction of Hydrogen from Acetate by Rhodopseudomonas: Effect of Culture Conditions and Sequential Dark/Light Fermentation

  • Oh, You-Kwan;Seol, Eun-Hee;Park, Sung-Hoon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.422-427
    • /
    • 2003
  • Rhodopseudomonas palustris P4 can produce $H_2$ either from CO by water-gas shift reaction or from various sugars by anaerobic fermentation. Fermentative $H_2$ production by P4 is fast, but its yield is relatively low due to the formation of various organic acids. In order to increase $H_2$ production yield from glucose, P4 was investigated for the photo-fermentation of acetate which is a major by-product of fermentative $H_2$ production. Experiments were performed in batch modes using both light-grown and dark-grown cells. When the dark-grown P4 was challenged with light and acetate, $H_2$ was produced with the consumption of acetate after a lag period of 25 h. $H_2$ production was inhibited when a nitrogen source, especially ammonium, is present. When the dark-fermentation broth containing acetate was adopted for photo-fermentation with light-grown cells, $H_2$ production and concomitant acetate consumption occurred without a lag period. The $H_2$ yield was estimated as 2.4 - 2.8 mol $H_2/mol$ acetate and the specific $H_2$ production rate was as 9.8 ml $H_2/g$ cell${\cdot}$h, The fact that a single strain can perform both dark- and light-fermentation gives a great advantage in process development Compared to a one-step dark-fermentation, the combined dark- and light-fermentation can increase the $H_2$ production yield on glucose by two-fold.

  • PDF

Effect of alginate chemical disinfection on bacterial count over gypsum cast

  • Haralur, Satheesh B.;Al-Dowah, Omir S.;Gana, Naif S.;Al-Hytham, Abdullah
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.84-88
    • /
    • 2012
  • PURPOSE. To evaluate the efficacy of sodium hypochlorite (1 : 10) and iodophor disinfectants on alginate impressions along with their effect on the survived bacterium count on the gypsum cast. MATERIALS AND METHODS. Four alginate impression on each dentate patients were made, of which Group I were not washed or disinfected, Group II impressions were merely washed with water, Group III were disinfected by spraying with sodium hypochlorite (1 : 10), Group IV were disinfected with iodophor (1 : 213). Gypsum cast (type III) were made from all the impression. Impressions and gypsum cast were swabbed in mid palatal region for bacterial culture. Bacterial colony counting done after 3 days of incubation at $37^{\circ}C$ in blood agar media. The data obtained was analyzed by one way ANOVA test at a significant difference level of 0.05. RESULTS. Group I and Group II showed significantly more bacteria compared to Group III and Group IV. Bacterial colonies on the alginate impression and gypsum cast in group disinfected with Sodium hypochlorite (1 : 10) were 0.18, 0.82 respectively compared to group treated with iodophor (1 : 213). There was an increase in bacterial count on dental cast compared to source alginate impressions. CONCLUSION. Sodium hypochlorite (1 : 10) was found to be better disinfectant for alginate impression. There was an indication of increase in number of bacteria from alginate impression to making of dental cast. Additional gypsum cast disinfectant procedures need to be encouraged to completely eliminate cross infection to dental laboratory.

Fermentative Hydrogen Production from the Pretreated Food-Processing Waste and Sewage Sludge using Chemical/Ultra-Sonication (두부제조폐기물과 하수슬러지의 화학/초음파 전처리에 의한 가용화 및 혐기발효 수소생산)

  • Kim, Mi-Sun;Lee, Dong-Yeol;Kim, Dong-Hun;Kim, Ok-Sun;Lim, So-Yung
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.580-586
    • /
    • 2010
  • Acid and alkali pretreatments were applied to tofu processing waste (TPW) to increase the solubility of ingredients in TPW. Pretreatment at 1.0% of HCl and 2.5% of NaOH condition resulted in the increase of SCOD concentration from 3.2 g COD/L to 27 g COD/L and 33 g COD/L, respectively. The acid and alkali-pretreated TPW was studied for its fermentative $H_2$ production capacity in batch mode using a thermophillic mixed culture. Alkali pretreatment on presence of 2.5% NaOH exhibited more soluble portion released compared to acid pretreatment using HCl, however the $H_2$ production from acid pretreated TPW was better than alkali-pretreated TPW probably due to the sodium inhibition on microbial activity. In addition, sewage sludge was externally added to the acid-pretreated (1.0% HCl) TPW by 20% (on volume basis). Average H2 production rate was increased from 31 to 78 ml/L-broth/hr, and it was attributed to the high buffer capacity and abundant nutrients especially divalent cation in sewage sludge.

Bioethanol Production Based on Crude Glycerol Using Enterobacter aerogenes (Enterobacter aerogenes를 이용한 crude glycerol 기반의 바이오에탄올 생산)

  • Jung, Hong-Sub;Seong, Pil-Je;Go, A-Ra;Lee, Sang-Jun;Kim, Seung-Wook;Han, Sung-Ok;Cho, Jae-Hoon;Cho, Dae-Haeng;Kim, Yong-Hwan;Park, Chul-Hwan
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.223-228
    • /
    • 2011
  • The effects of pH, glycerol concentration and salt on cell growth and ethanol production using Enterobacter aerogenes KCTC 2190 were evaluated in the anaerobic culture condition. In condition of initial pH 5, cell growth and ethanol production were highest. An initial concentration of 10 g/L of pure glycerol gave the highest cell growth and ethanol production. However, in case of over 15 g/L of pure glycerol, they decreased. The cell growth and ethanol production decreased with the increase of salt concentration. When 10 g/L of crude glycerol was used as the carbon source, the cell growth and ethanol production were $1.32\;OD_{600}$ and 3.95 g/L, respectively, which were about 94.4% and 88.5% compared to those of pure glycerol. These result indicates that the crude glycerol produced in the biodiesel manufacturing process maybe useful as a potential carbon source for ethanol production form Enterobacter aerogenes KCTC 2190.

Effects of Rumen pH on Degradation Kinetics and Fermentation Indices of Corn Silage Ensiled with Antifungal and Carboxylesterase Producing Inoculants

  • Chang, Hong Hee;Paradhipta, Dimas Hand Vidya;Lee, Seong Shin;Lee, Hyuk Jun;Joo, Young Ho;Min, Hyeong Gyu;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.131-137
    • /
    • 2020
  • The present study investigated effects of antifungal and carboxylesterase inoculant on rumen fermentation with different rumen pH. Corn silage was treated without inoculant (CON) and with a mixed Lactobacillus brevis 5M2 and L. buchneri 6M1 (MIX). Rumen fluid was collected from two cannulated Hanwoo heifers before morning feeding (high rumen pH at 6.70) and 3 h after feeding (low rumen pH at 6.20). Dried corn silage was incubated in the rumen buffer (rumen fluid + anaerobic culture medium at 1:2 ratio) for 48 h at 39℃. Eight replications for each treatment were used along with two blanks. Both in a high and a low rumen pH, MIX silages presented higher (p<0.05) the immediately degradable fraction, the potentially degradable fraction, total degradable fraction, and total volatile fatty acid (VFA) than those of CON silages. Incubated corn silages in a low rumen pH presented lower (p<0.05) total degradable fraction, ammonia-N, total VFA (p=0.061), and other VFA profiles except acetate and propionate, than those in a high rumen pH. The present study concluded that application of antifungal and carboxylesterase inoculant on corn silage could improve degradation kinetics and fermentation indices in the rumen with high and low pH conditions.

Microbial Enrichment and Community Analysis for Bioelectrochemical Acetate Production from Carbon Dioxide (이산화탄소로부터 생물전기화학적 아세트산 생산을 위한 미생물 농화배양 및 군집 분석)

  • Kim, Junhyung;Kim, Young-Eun;Park, Myeonghwa;Song, Young Eun;Seol, Eunhee;Kim, Jung Rae;Oh, You-Kwan
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • Microbial electrosynthesis has recently been considered a potentially sustainable biotechnology for converting carbon dioxide (CO2) into valuable biochemicals. In this study, bioelectrochemical acetate production from CO2 was studied in an H-type two-chambered reactor system with an anaerobic microbial consortium. Metal-rich mud flat was used as the inoculum and incubated electrochemically for 90 days under a cathode potential of -1.1 V (vs. Ag/AgCl). Four consecutive batch cultivations resulted in a high acetate concentration and productivity of 93 mmol/L and 7.35 mmol/L/day, respectively. The maximal coulombic efficiency (rate of recovered acetate from supplied electrons) was estimated to be 64%. Cyclic voltammetry showed a characteristic reduction peak at -0.2~-0.4 V, implying reductive acetate generation on the cathode electrode. Furthermore, several electroactive acetate-producing microorganisms were identified based on denaturing- gradient-gel-electrophoresis (DGGE) and 16S rRNA sequence analyses. These results suggest that the mud flat can be used effectively as a microbial source for bioelectrochemical CO2 conversion.

Pyruvate Protects Giardia Trophozoites from Cysteine-Ascorbate Deprived Medium Induced Cytotoxicity

  • Raj, Dibyendu;Chowdhury, Punam;Sarkar, Rituparna;Saito-Nakano, Yumiko;Okamoto, Keinosuke;Dutta, Shanta;Nozaki, Tomoyoshi;Ganguly, Sandipan
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Giardia lamblia, an anaerobic, amitochondriate protozoan parasite causes parasitic infection giardiasis in children and young adults. It produces pyruvate, a major metabolic product for its fermentative metabolism. The current study was undertaken to explore the effects of pyruvate as a physiological antioxidant during oxidative stress in Giardia by cysteine-ascorbate deprivation and further investigation upon the hypothesis that oxidative stress due to metabolism was the reason behind the cytotoxicity. We have estimated intracellular reactive oxygen species generation due to cysteine-ascorbate deprivation in Giardia. In the present study, we have examined the effects of extracellular addition of pyruvate, during oxidative stress generated from cysteine-ascorbate deprivation in culture media on DNA damage in Giardia. The intracellular pyruvate concentrations at several time points were measured in the trophozoites during stress. Trophozoites viability under cysteine-ascorbate deprived (CAD) medium in presence and absence of extracellular pyruvate has also been measured. The exogenous addition of a physiologically relevant concentration of pyruvate to trophozoites suspension was shown to attenuate the rate of ROS generation. We have demonstrated that Giardia protects itself from destructive consequences of ROS by maintaining the intracellular pyruvate concentration. Pyruvate recovers Giardia trophozoites from oxidative stress by decreasing the number of DNA breaks that might favor DNA repair.

Characterization of Interphase Microbial Community in Luzhou-Flavored Liquor Manufacturing Pits of Various Ages by Polyphasic Detection Methods

  • Li, Hui;Huang, Jun;Liu, Xinping;Zhou, Rongqing;Ding, Xiaofei;Xiang, Qianyin;Zhang, Liqiang;Wu, Chongde
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.130-140
    • /
    • 2017
  • It is vital to understand the changing characteristics of interphase microbial communities and interspecies synergism during the fermentation of Chinese liquors. In this study, microbial communities in the three indispensable phases (pit mud, zaopei, and huangshui) of Luzhou-flavored liquor manufacturing pits and their shifts during cellars use were first investigated by polyphasic culture-independent approaches. The archaeal and eubacterial communities in the three phases were quantitatively assessed by combined phospholipid ether lipids/phospholipid fatty acid analysis and fluorescence in situ hybridization. In addition, qualitative information regarding the microbial community was analyzed by PCR-denaturing gradient gel electrophoresis. Results suggested that the interphase microbial community profiles were quite different, and the proportions of specific microbial groups evolved gradually. Anaerobic bacteria and gram-positive bacteria were dominant and their numbers were higher in pit mud ($10^9$ cells/g) than in huangshui ($10^7$ cells/ml) and zaopei ($10^7$ cells/g). Hydrogenotrophic methanogenic archaea were the dominant archaea, and their proportions were virtually unchanged in pit mud (around 65%), whereas they first increased and then decreased in zaopei (59%-82%-47%) and increased with pit age in huangshui (82%-92%). Interactions between microbial communities, especially between eubacteria and methanogens, played a key role in the formation of favorable niches for liquor fermentation. Furthermore, daqu (an essential saccharifying and fermentative agent) and metabolic regulation parameters greatly affected the microbial community.

Antibiotic Production of Pseudomonas otitidis PS and Mode of Action (Pseudomonas otitidis PS 균주의 항생물질 생산과 작용 기작)

  • Ahn, Kyung-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.40-44
    • /
    • 2018
  • An isolate capable of inhibiting the growth of gram-positive bacteria was obtained from the soil of Mushim stream, Cheongju. The isolate was identified as Pseudomonas otitidis PS by 16S rRNA gene sequence analysis. P. otitidis PS produced antibiotics as a secondary metabolite when cultured in 1% soybean meal with 0.5% glucose. The maximum yield was about 0.1%. The antibiotic substance of P. otitidis PS extracted using ethyl acetate displayed a minimum inhibitory concentration of $2{\mu}g/ml$ for Staphylococcus aureus KCTC 1261. The antibiotic substance produced an orange halo on chrome azurol S agar due to siderophore activity. Growth inhibition was decreased when the iron was depleted. Since the antibiotic activity was lost upon the addition of the reducing agent ascorbic acid or during anaerobic culture, it was considered that antibiotic of P. otitidis PS strain exerts its bactericidal effect by the generation of reactive oxygen species.

Methane Production of Different Forages in In vitro Ruminal Fermentation

  • Meale, S.J.;Chaves, A.V.;Baah, J.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.86-91
    • /
    • 2012
  • An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on $CH_4$ production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at $55^{\circ}C$ and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall's buffer and rumen fluid were incubated under anaerobic conditions at $39^{\circ}C$ for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM) ranged from 671 to 713 (grasses), 377 to 590 (leguminous shrubs) and 288 to 517 (non-leguminous shrubs). After 24 h of in vitro incubation, cumulative gas, $CH_4$ production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05) within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate $CH_4$ emissions without compromising digestion. Grazing of these two species may be a strategy to reduce $CH_4$ emissions however further assessment in in vivo trials and at different stages of maturity is recommended.