• Title/Summary/Keyword: Anaerobic condition

Search Result 486, Processing Time 0.025 seconds

Composition and functional diversity of bacterial communities during swine carcass decomposition

  • Michelle Miguel;Seon-Ho Kim;Sang-Suk Lee;Yong-Il Cho
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1453-1464
    • /
    • 2023
  • Objective: This study investigated the changes in bacterial communities within decomposing swine microcosms, comparing soil with or without intact microbial communities, and under aerobic and anaerobic conditions. Methods: The experimental microcosms consisted of four conditions: UA, unsterilized soil-aerobic condition; SA, sterilized soil-aerobic condition; UAn, unsterilized soil-anaerobic condition; and San, sterilized soil-anaerobic condition. The microcosms were prepared by mixing 112.5 g of soil and 37.5 g of ground carcass, which were then placed in sterile containers. The carcass-soil mixture was sampled at day 0, 5, 10, 30, and 60 of decomposition, and the bacterial communities that formed during carcass decomposition were assessed using Illumina MiSeq sequencing of the 16S rRNA gene. Results: A total of 1,687 amplicon sequence variants representing 22 phyla and 805 genera were identified in the microcosms. The Chao1 and Shannon diversity indices varied in between microcosms at each period (p<0.05). Metagenomic analysis showed variation in the taxa composition across the burial microcosms during decomposition, with Firmicutes being the dominant phylum, followed by Proteobacteria. At the genus level, Bacillus and Clostridium were the main genera within Firmicutes. Functional prediction revealed that the most abundant Kyoto encyclopedia of genes and genomes metabolic functions were carbohydrate and amino acid metabolisms. Conclusion: This study demonstrated a higher bacteria diversity in UA and UAn microcosms than in SA and SAn microcosms. In addition, the taxonomic composition of the microbial community also exhibited changes, highlighting the impact of soil sterilization and oxygen on carcass decomposition. Furthermore, this study provided insights into the microbial communities associated with decomposing swine carcasses in microcosm.

The Effects of Sulfate on Anaerobic Treatment with UASB (황산염이 UASB 반응조에서 혐기성 분해 반응에 미치는 영향)

  • 정승현;양병수
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.47-56
    • /
    • 1998
  • Effects of sulfate on the anaerobic substrate utilization were evaluated using UASB (Upflow Anaerobic Sludge Blanket) reactor. Effect of sulfate on the organic removal rate was dependent on the relative amount of microorganisms in the reactor, the operational condition, and the characteristics of sludge. When the sulfate shock was applied to 0.0 - 3.0g SO$_{4}$$^{2-}$/d, more than 95% of COD removal efficiency was achieved. Therefore, if F/M ratio was kept to low sufficiently with recirculation, it is shown that operation of the reactor was not affected significantly, though sulfate shock load was doubled compared to the normal operation. Provided that it is shocked by high strength of sulfate or temporary shock load is applied frequently the efficiency of reactor may be disadvantageous as well as the wash-out of sludge will be increased by decreasing the size to the accumulated frequency of granular sludge and the size with maximum frequency.

  • PDF

Treatment of Textile Wastewater by Anaerobic Sludge and Aerobic Fixed-Bed Biofilm Reactor (혐기성 슬러지 공정과 호기성 고정생물막 공정을 이용한 염색폐수 처리)

  • 박영식;문정현
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.55-63
    • /
    • 2002
  • This study was carried out to treat textile wastewater using anaerobic sludge and aerobic fixed-bed biofilm reactor immobilized with Bacillus sp. dominated activated sludge(Bacillus sp. fraction : 81.5%). The range of influent con-centration of SCOD and soluble color were 1032-1507 mg/1, and 1239-1854 degree, respectively. Continuous treatment experiments were performed with variation of textile wastewater ratio at a same HRT. When textile wastewater ratio was 100%(HRT : 24 hours), The removal efficiency of SCOD and soluble color were 88% and 78%, respectively. When compare aerobic reactor of this study that was immobilized with Bacillus sp. dominated activated sludge to other study that was immobilized with activated sludge, SCOD and soluble color removal efficiency of this study showed a little higher efficiency than immobilized with activated sludge. The Bacillus sp. fraction of initial condition was 81.5%), but the fraction after operation was decreased to 31.8%).

Operational Strategy of Anaerobic Digesters Considering Energy Balance (에너지수지를 고려한 혐기성소화시설의 운영방안)

  • Hong, Seong-Gu;Kwun, Soon-Kuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.59-66
    • /
    • 2008
  • Anaerobic digestion system is getting more attractive in that it produces biogas in the process of organic waste stabilization. Net energy production is important when biogas production is concerned. In this study, net energy production was evaluated with respect to biogas production and heat losses in a hypothetical digester. Under the condition of digester operation with slurry inflow of 5% of TS, additional fuel is required to maintain digester temperature during the winder season. Substrate therefore, needs to have higher VS contents through co-digestion of silage or food waste that has greater values of methane production rate. Heating input slurry is important in cold season, which covers over 80% of heating requirement. Heat recovery from digestate is valuable to reduce the use of biogas for heating. It seems desirable to minimize slurry inflow when temperature is very low. Psychrophilic digestion may be a feasible option for reducing heating requirement.

Methane Production by Anaerobic Digestion of Grain Dust in a Plug Flow Digester (플러그 흐름 소화기 속에서 Grain Dust의 혐기성 소화에 의한 메탄가스 생산)

  • Tae-Kyung Yoon;Sung-Bum Han;Moon-Ki Park;Seung-Koo Song
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.311-316
    • /
    • 1993
  • Methane production from grain dust was studied using a 3 L laboratory-scale anaerobic plug flow digester. The digester was operated at; temperature of 35, 45, and 55$^{\circ}C$; hydraulic retention time(HRT) of 6 and 12 days; and influent concentration($S_o$) of 7.8 and 9.0 % total solids(%TS). With ten different operation conditions, this study showed the significant effects of temperature, hydraulic retention time, and influent concentration on methane production. The highest methane-production rate achieved was 1.903 (L methane) /(L digester)(day) at 55$^{\circ}C$, 6 days HRT, and $S_0$ of 7.8 %TS. A total of 3.767 L of biogas per day with a methane content of 50.57 % was obtained from this condition. The ultimate methane yield($B_0$) was found to be a function of temperature and influent concentration, and was described as : $B_0$ = 0.02907T-0.1263-0.00297(T-10)(%TS), where TS is the total solids in the liquid effluent, and T is temperature($^{\circ}C$). Our results showed that thermophilic condition is better than mesophilic for grain dust stabilization in an anaerobic plug flow digester.

  • PDF

Enhancement of Anaerobic Biodegradability using the Solubilized Sludge by the Cavitation process (Cavitation에 의해 가용화된 슬러지의 혐기성 생분해도 향상에 관한 연구)

  • Kim, Dongha;Lee, Jaegyu;Jung, Euitaek;Jeong, Hoyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • In order to investigate the effective pretreatment methods in WAS(=waste activated sludge) solubilization, the values of SCOD yield per unit SS (SCOD/gSS.hr) were compared. After the hydrodynamic cavitation with pH of 12.5, SCOD increased to 7800 mg/L, SS decreased to 45 % and the solubilization rate was 29 %. Combination of alkality (pH 12.5) and the cavitation seems to be the optimal condition for sludge solubilization. After the cavitational pretreatment, efficiencies of anaerobic digestion of the unfiltered sludge(the control), raw sludge and pretreated sludge were evaluated with BMP(=biochemical methane potential) tests. For evaluation of the biodegradability characteristics of pretreated sewage sludge, the methane production has been measured for 6 months. The methane production of pretreated sludge increased 1.4 times than that of untreated sludge. The result indicates that the cavitationally pretreated sludge was a better biodegradability substrate in anaerobic condition compared to raw sludge. It is obvious that cavitational pretreatment could enhance not only solubilization but also biodegradability of WAS. In conclusion, cavitational pretreatment of WAS to convert the particulate into soluble portion was shown to be effective in enhancing the digestibility of the WAS.

Degradation and Removal of Nonylphenol Ethoxylates in Wastewater by a Sequencing Batch Reactor Process (연속회분식 반응조 공정에서 하수 중의 nonylphenol ethoxylates의 분해 및 제거)

  • Lee, Seock-Heon;Bum, Jin-Young;Park, Ki Young;Kim, Jong-Guk;Seo, Yong-Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.680-688
    • /
    • 2004
  • A sequencing batch reactor (SBR) was operated to investigate the degradation and removal of non-ionic surfactant, nonylphenol ethoxylates (NPEOs) in wastewater using lab scale experimental apparatus. About 5mg/L of NPEO was introduced and only < 0.1mg/L of NPEOs and nonylphenol(NP) in total was detected in treated effluent. In the effluent, long chain ethoxylates (NPEO12-15) were not detected, but short chain ethoxylates (NPEO1,2) were in relatively high concentration. NPEOs in the mixed liquor disappeared more rapidly in anaerobic condition than in aerobic condition.

Characterization of the purple nonsulfur bacterium, rhodopseudomonas palustris strain P-1, degrading ferulate

  • Hee, Hong-Duck;Kim, Kyung-Hwan;Lee, Jai-Youl
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 1992
  • Photosynthetic bacteria which can utilize ferulate as a sole carbon source for their metabolic activities were isolated from soils by liquid enrichment culture technique. The strain P-1 was selected by the highest capability of degrading ferulate in aerobic and anaerobic conditions. The strain P-1 was rod-shaped with its motility, strained gram negatively and could not utilize sulfur compounds. This strain has the bacteriochlorophyll a group I carotenoid and membrane structures like lamellae. As the results of physiological, morphological and cultural charactderistics, the isolate was identified as Rhodopseudomonas plaustris, one of the purple nonsulfer bacteria. The strain P-1 utilized 2mM/day in aerobic condition and 0.86 mM/day in anaerobic condition.

  • PDF

고분자 담체에 부착된 미생물 형상

  • Park, Seong-Yeol;Lee, Seung-Ran;Park, Yeong-Sik;Song, Seung-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.532-535
    • /
    • 2000
  • Optical microscope, SEM and fluorescent microscope were used for qualitative and morphological studies of the attachment bacteria on PE substratum under anaerobic condition. The observation of optical microscopic has demonstrated that the initial attachment of bacteria began in crevices of surface. In SEM photographs, shape and structure of biofilm could be observed, but bacteria species and methanogens was not identified. A large number of methanogenic bacteria were showed on the surface of PE substratum by fluorescence under 480nm of radiation. It was estimated that methanogenic bacteria was related to initial attachment of bacteria under anaerobic condition.

  • PDF

The effects of organic materials on microbial mediation of arsenic. in contaminated sediment

  • Lee Jong-Un;Lee Sang-Woo;Kim Kyoung-Woong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.532-535
    • /
    • 2003
  • Indigenous bacterial mediation of As in contaminated sediment after biostimulation with a variety of carbon sources was investigated under aerobic and anaerobic conditions. Under the aerobic condition with lactate supply, indigenous bacteria increased the amount of total As extracted from the sediment and most dissolved As existed as As(V). Under the anaerobic, glucose-supplied condition, dissolved As diminished with time likely due to production of As sulfide(s) and subsequent precipitation, which resulted from bacterial reduction of ${SO_4}^{2-}$. The results implied that bacterial natural attenuation of As in subsurface has a potential to be practically applied.

  • PDF