• Title/Summary/Keyword: Anaerobic condition

Search Result 486, Processing Time 0.03 seconds

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN;SANG BYUNG IN;PARK DAE WON;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1221-1228
    • /
    • 2005
  • Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.

Bioconversion of D,L-ATC to L-cysteine Using Whole Cells (D,L-ATC의 L-cysteine으로의 생물학적 전환반응에서의 균체이용 기술)

  • 윤현숙;류옥희;신철수
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.681-686
    • /
    • 1992
  • In the conversion of D.L-2-amino-$\Delta^2$-thiazoline-4-carboxylic acid(D,L-ATC) to L-cysteine using Pseudomonas sp. CU6. the effects of surfactants on whole cells and the stabilities of cellfree enzyme solution and continuous reactor packed with immobilized whole cells were investigated. The enzymatic reaction was little accomplished by whole cells without adding surfactants, whereas it was well carried out with SDS or Triton X-loo comparable to the case using cell-free enzyme solution. Enzyme activity of the cell-free solution was lost by 50% after 7 hours of storage at $30^{\circ}C$, but not at all under an anaerobic condition by sparging nitrogen gas. On the other hand. effect of nitrogen gas did not appear in a continuous reactor using immobilized whole cells, and hydroxylamine, an inhibitor of L-cysteine desulfhydrase, lowered the enzyme stability.

  • PDF

Production of Reuterin by Batch and Continuous Reactor and Antimicrobial Characteristics of Reuterin (회분식과 연속식에 의한 루테린 생산 및 루테린의 항균 특성)

  • Yum, Eun-Mi;Kim, Ji-Yeun;Shin, Hyun-Kyung;Ji, Geun-Eog
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.111-115
    • /
    • 2004
  • Reuterin production efficiency of Lactobacillus reuteri, which converts glycerol into reuterin (antimicrobial substance) under anaerobic condition, was examined. When compared at $32,\;37,\;and\;42^{\circ}C$, production rate and total amount produced increased with increasing incubation temperature. Reuterin production terminated earlier at $42^{\circ}C$ than at $32\;and\;37^{\circ}C$. Presence of various amino acids in the reaction mixture generally decreased reuterin production, whereas proline did not inhibit reuterin production. A continuous-type reactor in which glycerol was passed through the chamber containing L. reuteri cells produced greater amount of reuterin than when batch-type process was used.

Efficient aerobic denitrification in the treatment of leather industry wastewater containing high nitrogen concentration

  • Kang, Kyeong Hwan;Lee, Geon;Kim, Joong Kyun
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • To treat leather industry wastewater (LIW) containing high nitrogen concentration, eight aerobic denitrifiers were isolated from sludge existing in an LIW-treatment aeration tank. Among them, one strain named as KH8 had showed the great ability in denitrification under an aerobic condition, and it was identified as Pseudomonas aeruginosa R12. The aerobic denitrification ability of the strain KH8 was almost comparable to its anaerobic denitrification ability. In lab-scale aerobic denitrifications performed in 1-L five-neck flasks for 48 hr, denitrification efficiency was found to be much improved as the strain KH8 held a great majority in the seeded cells. From the nitrogen balance at the cell-combination ratio of 10:1 (the strain KH8 to the other seven isolates) within the seeded cells, the percentage of nitrogen loss during the aerobic denitrification process was estimated to be 58.4, which was presumed to be converted to $N_2$ gas. When these seeded cells with lactose were applied to plant-scale aeration tank for 56 day to treat high-strength nitrogen in LIW, the removal efficiencies of $COD_{Cr}$ and TN were achieved to be 97.0% and 89.8%, respectively. Under this treatment, the final water quality of the effluent leaving the treatment plant was good enough to meet the water-quality standards. Consequently, the isolated aerobic denitrifiers could be suitable for the additional requirement of nitrogen removal in a limited aeration-tank capacity. To the best of our knowledge, this is the first report of aerobic denitrifiers applied to plant-scale LIW treatment.

Characteristics of Advanced Wastewater Treatment Process Using High MLSS in Anoxic Tank (무산소조에서 고농도 미생물을 이용한 하수고도처리공정의 처리특성)

  • Son, Dong-Hun;Lim, Bong-Su;Park, Hye-Sook
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2004
  • This study was accomplished to develope an advanced wastewater treatment process using high MLSS in anoxic tank aimed to improve nutrient removal and to reduce wasting sludge. It was operated with 4 Modes with varing solid concentration and internal recycle ratios. Mode I, II, III was operated 1.0~1.5% MLSS concentration at anoxic tank with 50% sludge recycle rate, however, each internal recycle rate were 100%, 200%, 300% and Mode IV was operated 1.5~2.0% MLSS concentration at anoxic tank with 50% sludge recycle rate and 100% internal recycle rate. The COD removal efficiency didn't show any big difference from Mode I to IV. The average COD removal rate was over than 90%. The T-N removal rate was 73%, the highest rate in all mode. The 36% of SCOD is used for the denitrification and phosphorus release in the anoxic tank. Specific denitrification rate was 3.5mg $NO_3{^-}-N/g$ Mv/hr and denitrification time was 0.7hr. As MLSS concentration is higher in anoxic tank as denitrification time would be shorter. The T-P removal rate was average 70%. The phosphorus release accomplished from the anoxic tank because the anaerobic condition was prevalent in the anoxic due to the prompt completion of denitrification. Sludge production was 0.28 kgVSS/kg $BOD_{removed}$ under the 1.5% MLSS and 17 day SRT. It is prominent result which has 40% sludge reduce comparing with traditional activate sludge system.

The Effect of Acidification on Membrane Distillation Process for Strong Nitrogenous Wastewater (산화 전처리가 고강도 질소폐수의 막증류 공정에 미치는 영향)

  • Tun, Lat Lat;Jeong, Dawoon;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.137-147
    • /
    • 2020
  • A direct contact membrane distillation (DCMD) was applied to treat strong nitrogenous wastewater of anaerobic digestion supernatant (ADS) and human urine (HU). The ammonia transfer was evaluated in terms of specific ammonia transfer (SAT) value, which is the ratio of total ammoniacal nitrogen divided by the amount of water transferred. The acidification resulted in low SAT values and high quality of produced water. The ammonia transfer control in the acidic condition was stronger for HU than ADS due to higher alkalinity (pH 8.8) and ammonia concentration (5700 mg-N/L) of HU. Acidified HU at pH 4 exhibited a SAT value of 1.64 × 10-5, which was significantly smaller than the SAT value of 3.00 × 10-3 for the original HU. The low pH enhanced the water flux for ADS, but HU showed a steep decrease in water flux due to enhanced fouling. It was considered that the fouling intensity in acidic conditions depends on the characteristics of the wastewater source. The major foulants on the MD membrane were NaCl, CaCO3 and CuSO4 as recognized by the SEM-EDS. Acidified ADS and HU at pH 4 showed relatively high N content of 8.18 % and 28.03 %, respectively, as organic fouling.

Reduction of the Offensive Odor from Confectionery Wastewater Plant (제과공장의 폐수처리장에서 발생하는 악취 저감)

  • 김영식;손병현;조상원;정종현
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.62-69
    • /
    • 1998
  • It has been studied that the measurement of odor component emission at confectionery manufacture. The objects of this study were to investigate reduction of offensive odor. The survey effects of odorous materials are presented as follows. The countermeasure of operating process is to minimize sludge sediment in each unit facility. Especially, in summer, we have to clean the sludge frequently, because anaerobic decomposing is likely to occur easily. The sludge or scum from sedimentation tank pond, and floating tank should be treated quickly. We should avoid overloading operation. In the case of overloading, dissolved oxygen should be increased, the quality of wastewater input should be decreased. When dried cakes from condense tank or floating tank are left in treatment plant, we should cover, to prevent diffusion of smell with masking materials. The seasonal condition of operating should be fixed and the kind of coagulants should be changed because the wastewater in each season have different loading rates and organic materials. Odorous materials are very sensitive to the seasonal temperature variation. Especially, when the amount of rainfall is small and the high temperature of maintenance in long periods, air diffusion rate is large, so odorous materials can make great effect on surroundings comparision with other periods. To reduce odorous gas, as short term method, we had better take ceramic addition method. Especially, in summer we should take ceramic addition method. Also, as long term method, the size of wastewater treatment facility is the most important in the normal operating of wastewater treatment facility. But wastewater treatment facilities in this factory are too old, treatment process is old fashion, and the size is too small. So, large wastewater quantity to treat in summer. As results, the expansion of wastewater treatment facility and the process of improvement are required. Restriction level of odor was exceed. As it is overloaded in summer, the basis cause of odor is that the size of wastewater treatment facility is small. The prediction of air quality equilibrium density variation show that the odorous materials from working place are Amine materials whose smell strength is about 2.5(a little strong degree). We can suppose that in summer is sensitive to temperature variation, smell strength is larger as to reduce the origin of odor. We must expand wastewater treatment facility and improve the process A.S.A.P.

  • PDF

Production and Characterization of Antifungal Chitinase of Bacillus licheniformis Isolated from Yellow Loess (황토로부터 분리한 Bacillus licheniformis의 항진균 chitinase 생산과 효소 특성)

  • Han, Gui Hwan;Bong, Ki Moon;Kim, Jong Min;Kim, Pyoung Il;Kim, Si Wouk
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.131-138
    • /
    • 2014
  • In this study, we isolated two novel chitinase producing bacterial strains from yellow loess samples collected from Jullanamdo province. The chitinase producing bacteria were isolated based on the zone size of clearance in the chitin agar plates. Both of them were gram positive, rod ($2{\sim}3{\times}0.3{\sim}0.4{\mu}m$), spore-forming, and motility positive. They were facultative anaerobic, catalase positive and hydrolyzed starch, gelatin, and casein. From the 16s rRNA gene sequence analysis, the isolates were labeled as Bacillus licheniformis KYLS-CU01 and B. licheniformis KYLS-CU02. The isolates showed higher extracellular chitinase activities than B. licheniformis ATCC 14580 as a control. The optimum temperature and pH for chitinase production were $40^{\circ}C$ and pH 7.0, respectively. Response Surface Methodology (RSM) was used to optimize the culture medium for efficient production of the chitinase. Under this optimal condition, 1.5 times higher chitinase activity of B. licheniformis KYLS-CU02 was obtained. Extracellular chitinases of the two isolates were purified through ammonium sulfate precipitation and anion-exchange DEAE-cellulose column chromatography. The specific activities of purified chitinase from B. licheniformis KYLS-CU01 and B. licheniformis KYLS-CU02 were 7.65 and 5.21 U/mg protein, respectively. The molecular weights of the two purified chitinases were 59 kDa. Further, the purified chitinase of B. licheniformis KYLS-CU01 showed high antifungal activity against Fusarium sp.. In conclusion, these two bacterial isolates can be used as a biopesticide to control pathogenic fungi.

Application of lactic acid bacteria on fermentation quality in different stages of rye forage - an in-vitro approach

  • Choi, Ki-Choon;Srigopalram, Srisesharam;Ilavenil, Soundharrajan;Kuppusamy, Palaniselvam;Park, Hyung-Su;Jung, Jeong Sung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.283-283
    • /
    • 2017
  • The objective of the present study is to analyze the lactic acid bacteria (LAB) effects on rye silage fermentation at different stages. Different stages (Booting, Heading, Flowering, and Late flowering stage) of rye were collected from the National livestock farm, National Institute of Animal Science, South Korea. Rye sample was inculcated with lactic acid bacteria and incubated at the anaerobic condition for three months. The nutrient profile such as crude protein (CP), Acid detergent fibre, Neutral detergent fibre and total digestibility nutrients were increased in both control and LAB inculcated samples at all the stages of rye forage. The pH of rye silage was reduced at both stages by LAB inoculation as compared with control. The lactate content was increased in all stages of rye sample by LAB. The acetate concentration and butyrate was reduced in LAB inoculated rye sample. However, acetate concentration was slightly high in LAB inculcated rye at heading and late flowering stage. The LAB population was greater in LAB inoculated rye sample as compared with control sample. However, the massive population was noted in booting stage of rye than the other stages. It indicates the inoculated LAB is the main reason for increasing fermentation quality in the sample through pH reduction by lactate production. Overall results suggest that the isolated lactic acid bacterium is the potent strain that could be suitable for rye forage fermentation at different stages.

  • PDF

Nitrogen Removal using Autotrophic Microorganism in Membrane-Attached Biofilm Reactor (MABR) (Membrane-Attached Biofilm Reactor(MABR)에서의 독립영양 미생물을 이용한 질소 제거)

  • Shin, Jeong-Hoon;Sang, Byoung-In;Chung, Yun-Chul;Choung, Youn-Kyoo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.624-629
    • /
    • 2005
  • The purpose of this study is to investigate the performance of nitrogen removal using autotrophic microorganism in the Membrane-Attached Biofilm Reactor (MABR). The treatment system consists of an aerobic MABR (R1) for nitrification and an anaerobic MABR (R2) for hydrogenotrophic denitrification. Oxygen and hydrogen were supplied through the lumen of hollow-fiber membranes as electron acceptor and donor, respectively. In phase Ι, simultaneous organic carbon removal and nitrification were carried out successfully in R1. In phase II, to develop the biofilm on the hollow-fiber membrane surface and to acclimate the microbial community to autotrophic condition, R1 and R2 were operated independently. The MABRs, R1 and R2 were connected in series continuously in phase III and operated at HRT of 8 hr or 4 hr with $NH_4{^+}-N$ concentration of influent, from 150 to 200 mgN/L. The total nitrogen removal efficiency reached the maximum value of 99% at the volumetric nitrogen loading rate of $1.20kgN/m^3{\cdot}d$ in the combined MABR system with R1 and R2. The results in this study demonstrated that the combined MABR system could operate effectively for the removal of nitrogen in wastewater not containing organic materials and can be used stably as a high rate nitrogen removal technology.