• Title/Summary/Keyword: Anaerobic condition

Search Result 486, Processing Time 0.023 seconds

Antibacterial Activity of $NANOVER^{TM}$ Against Oral Malodor Generating Microorganisms 1. The Effect of Nanosilver on Growth of Oral Malodor Generating Microorganisms (구취유발세균에 대한 $NANOVER^{TM}$의 항균효과 검사 1. Nanosilver가 구취 세균의 증식에 미치는 영향)

  • Jung, Young-Hee;Mo, Hye-Won;Jeong, Ji-Suk;Choi, Kyung-Ho;Choi, Jae-Kap;Hur, Yun-Kyung;Lee, Sang-Heun
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.1
    • /
    • pp.39-48
    • /
    • 2009
  • Recently there is much interest in the antibacterial activity of nano-sized silver particle (nanosilver) since silver is known to be safe and effective as disinfectant for a long time. Oral malodor is considered to originate in the oral cavity primarily as a result of production of malodorous compounds by oral bacteria. Major compounds responsible for oral malodor are volatile sulfur compounds, which is thought to be generated by the G(-) anaerobic bacteria found normally in the oral cavity, especially on the dorsum of the tongue. The purposes of this study were to investigate the effect of nanosilver on growth of oral malodor generating microorganisms, including Fusobacterium nucleatum, Prevotella melaninogenica, Klebsiella pneumonia, and to determine the optimal culture condition of them. The results were as follows: 1. The optimal culture condition for P. melaninogenica was vacuum culture using desiccator after evacuation of air by vacuum pump in chopped beef meat media. 2. The growth of K. pneumonia was temporarily inhibited by nanosilver (5 ppm and 10 ppm). 3. The morphological alteration and cell damage caused by nanosilver were observed in K. pneumonia.

Biosynthesis of Polyhydroxyalkanoates and 5-Aminolevulinic Acid by Rhodopseudomonas sp. KCTC1437 (Rhodopseudomonas sp. KCTC1437에서의 Polyhydroxyalkanoates와 5-Aminolevulinic Acid의 생합성)

  • 이영하;기형석;최강국;문명님;양영기
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.144-151
    • /
    • 2002
  • For elucidating the relationship between the biosynthetic pathways for polyhydroxyslkanoates (PHAs) and 5-aminolevulinic acid (ALA), culture conditions for the production of these two biomaterials by Rhodopseudomonas sp. KCTC 1437 were investigated. Of the carbon substrates tested, acetic acid was the best carbon source for cell growth and PHA biosynthesis. When succinic acid was added as a co-substrate into culture medium, cell growth and PHA production were greatly increased up to 2.5 g/ι and 73% of dry cell weight, respectively. The PHA obtained from the carbon substrates tested was homopolyester of 3-hydroxybutyrate, while valeric acid was only effective for the production of copolyester consisting of 3-hydroxybutyrate and 3-hydroxyvalerate. Anaerobic light culture condition was better for PHA production and cell growth than anaerobic dark or aerobic dark culture condition. The organism was capable of synthesizing ALA when glycine and succinic acid were added to the culture medium. ALA was produced to ca.400 mg/ι when levulinic acid, soccinic acid, and glycine were repeatedly added with a reductant (sodim thioglycolate). However, the presence of glycine, levulinic acid and sodium glycolate inhibited the cell growth and the conversion of carbon substrates to PHA. From these results it is apparent that the production yields of PHA and ALA could not be increased simultaneously because the optimal conditions for the production of PHA and ALA are opposed to each other.

A Study on the Effects of Cosubstrates on the Biological Treatment and the Decolorization Mechanisms of Dyeing Wastewater (염색폐수의 생물학적 처리에 미치는 cosubstrates의 영향 및 색도제거 기전 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Ahn, Jae-Hwan;Shin, Eung-Bai
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.738-745
    • /
    • 2006
  • In this research, the decolorization mechanisms of dye wastewater were divided into two pathways, one was physicochemical sorption to biomass flocs and the other was biological removal by microbial metabolisms. Batch tests were conducted to examine the reaction conditions, anaerobic and aerobic conditions, types and dose of cosubstrates, and to confirm the mechanisms of decolorization through the biosorption tests using the activated sludge and the autoclaved deactivated sludge. From the tests, the decolorization efficiencies of dye wastewater were 102 ${\Delta}$unit/g MLSS under the aerobic condition and 123 ${\Delta}$unit/g MLSS under the anaerobic condition, and organic removals were 82 $mg{\Delta}$COD/gMLSS and 75 $mg{\Delta}$COD/gMLSS respectively. Acetate was the more efficient cosubstrate than the domestic wastewater in the decolorization step. In addition the removal of colors and organics was increased with cosubstrates dosage. And $20.3{\sim}37.3$ ${\Delta}$unit/g MLSS was removed by the autoclaved sludge and $102.0{\sim}159.0$ ${\Delta}$unit/g MLSS by the activated sludge. The physicochemical sorption was dominant in the beginning of biosorption tests, and the biological decolorization was increased with a cosubstrate in the course of time.

Effect of Pretreatment Conditions on ${\gamma}-Aminobutyric$ Acid Content of Brown Rice and Germinated Brown Rice (전처리 조건이 현미 및 발아현미의 ${\gamma}-aminobutyric$ acid 함량에 미치는 영향)

  • Choi, Hee-Don;Park, Yong-Kon;Kim, Yun-Sook;Chung, Chang-Hwa;Park, Young-Do
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.761-764
    • /
    • 2004
  • Effects of pretreatment conditions on ${\gamma}-aminobutyric$ acid (GABA) contents of brown rice and germinated brown rice were investigated. As steeping time increased, GABA contents of brown rices increased gradually. The highest GABA content, 3.33mg/100g, was found in brown rice steeped at $40^{\circ}C$ for 8 hr. GABA content of brown rice decreased significantly at pH 8 (p<0.05), but changed slightly at pH of steeping solution ranging 4-7. Steeping of brown rices in glutamate solution increased GABA contents. Brown rice steeped in glutamate solution at 200-300 ppm showed GABA content between $4.09{\pm}0.48-4.11{\pm}0,47mg/100g$, which was much higher than that of untreated brown rice. Anaerobic treatment of brown rices using $N_2$ gas increased GABA contents, ranging from $4,70{\pm}0.49\;to\;4.92{\pm}0.83mg/100g$. Germinated brown rice steeped in glutamate solution under anaerobic condition had GABA content of $5.92{\pm}0.72mg/100g$, two-fold higher than that of untreated brown rice, $3.05{\pm}0.67mg/100g$. Optimum pretreatment condition established in this study could significantly increase GABA content in germinated brown rice.

AN EFFECT OF XYLITOL ON THE ADHESIVENESS OF STREPTOCOCCUS MUTANS TO SYNTHETIC HYDROXYAPATITE; AN IN VITRO STUDY (자일리톨 함유 식품이 합성 수산화인회석에 대한 Streptococcus mutans의 부착에 미치는 영향에 관한 실험적 연구)

  • Lee, Jae-Chun;Lee, Kwang-Hee;Kim, Dae-Eop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.1
    • /
    • pp.92-99
    • /
    • 2002
  • There have been efforts that inhibit development of dental caries by sugar substitution. But, it is controversial if xylitol has anticariogenic effect in the presence of sucrose. And there are few papers dealing with the combined action of xylitol and sucrose. For the purpose of resolving this controversy, the author investigated the effect of xylitol on enamel demineralization and on adhesiveness of S. mutans to hydroxyapatite in the presence of sucrose. Five experimental solutions were prepared as follows: (S: sucrose, X: xylitol) Group 1: BHI broth Group 2: BHI+1% S Group 3: BHI+0.75% S+0.25% X Group 4: BHI+0.5% S+0.5% X Group 5: BHI+0.25% S+0.75% X Group 6: BHI+1% X Each solution was inoculated with $100{\mu}l$ of S. mutans JC-2. And saliva coated hydroxyapatite beads were put into each experimental solution. And then each solution was incubated at $37^{\circ}C$ under anaerobic condition. After incubation, the adhesiveness of S. mutans on hydroxyapatite was evaluated. The Vickers hardness numbers were measured on extracted human primary teeth, and these teeth were dipped into the same experimental solution and incubated at $37^{\circ}C$ under anaerobic condition for 48hours. Surface microhardness were measured again after incubation. The obtained results were as follows; 1. In the presence of sucrose, xylitol can reduce the adhesiveness of S. mutans on hydroxyapatite surface from the ratio of 25% sucrose to 75% xylitol(P<0.05). 2. In the presence of sucrose, xylitol can reduced demineralization of primary teeth enamel surface from the ratio of 50% sucrose to 50% xylitol(P<0.01).

  • PDF

The Effect of Substrates and Nitrate on Biological Phosphorus Release (생물학적 인 방출시 유기물 및 질산염에 대한 영향)

  • Min, Kyung-Kook;Weon, Seung-Yeon;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.141-148
    • /
    • 2000
  • In this study, effects of substrates and nitrate on biological phosphorus release in EBPR(enhanced biological phosphorus removal) process were examined using batch test apparatus at anaerobic conditions. The sludge used in this experiments was taken from SBR(sequencing batch reactor) treating swine wastewater at aeration period. Phosphorus release rates obtained with substrates of FSW(fermented swine wastewater), acetate, propionate, domestic wastewater and methanol were 6.19, 5.99, 1.52, 1.2 and $1.03mgP/gVSS{\cdot}hr$, respectively. Those observed with acetate and FSW were 4~5 times greater than those with propionate, methanol and domestic wastewater. Therefore phosphorus release rates were significantly affected by type of substrate added at anaerobic condition. Phosphorus release was greatly affected by concentration of nitrate in anoxic condition. Comparing to acetate, propionate and FSW, phosphorus release was observed after almost completely depletion of nitrate concentration with methanol and domestic wastewater added as substrate. In the cases supplied with acetate, propionate and FSW, phosphorus release rates were less influenced by a nitrate concentration than those with methanol and domestic wastewater.

  • PDF

Interaction between Light and other Factors Affecting Germination of Oenothera lamarckiana Ser. Seed. (큰달맞이꽃 종자발아(種子發芽)에 영향하는 요인(要因)과 광간(光間)의 상호작용(相互作用))

  • Kim, J.S.;Hwang, I.T.;Koo, S.J.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.8 no.1
    • /
    • pp.15-22
    • /
    • 1988
  • In this experiment, interactions between light and other factors such as chilling, alternating temperature, moisture, content, oxygen, and seed coat which affect germination of Oenothera lamarckiana Ser. seed were investigated to study the physiological effects of light on the germination. Light induced the initial stage of seed germination before radical protrusion by affecting embryo rather than seed coat even under anaerobic condition or low water potential (-18 bars). This light effect on germinability of seed was suppressed by blue light irradiation and the effect was increased with increment of blue light intensity and irradiation time. However, the blue light effect was reversible. Chilling, alternating temperature, softening of seed coat and light showed promotive interaction in the induction of seed germination. Irradiation of filtered light (monochrome), however, reduced chilling effect on germination. Hydrogen-ion concentration and gibberellic acid treatment had no effect on light or dark germination.

  • PDF

Hydrogen Gas Production from Biogas Reforming using Plasmatron (플라즈마트론을 이용한 바이오가스 개질로부터 수소생산)

  • Kim, Seong Cheon;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.528-534
    • /
    • 2006
  • The purpose of this paper is to investigate the optimal operating condition for the hydrogen production by biogas reforming using the plasmatron induced thermal plasma. The component ratio of biogas($CH_4/CO_2$) produced by anaerobic digestion reactor were 1.03, 1.28, 2.12, respectively. And the reforming experiment was performed. To improve hydrogen production and methane conversion rates, parametric screening studies were conducted, in which there are the variations of biogas flow ratio(biogas/TFR: total flow rate), vapor flow ratio($H_2O/TFR$: total flow rate) and input power. When the variations of biogas flow ratio, vapor flow ratio and input power were 0.32~0.37, 0.36~0.42, and 8 kW, respectively, the methance conversion reached its optimal operating condition, or 81.3~89.6%. Under the condition mentioned above, the wet basis concentrations of the synthetic gas were H2 27.11~40.23%, CO 14.31~18.61%. The hydrogen yield and the conversion rate of energy were 40.6~61%, 30.5~54.4%, respectively, the ratio of hydrogen to carbon monoxide($H_2/CO$) was 1.89~2.16.

Behavioral characteristics of phosphorus in sediments according to the forms of phosphorus

  • Kim, Tae-hoon;Lee, Jongjun;Kim, Jungsoo;Oh, Jong-min
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.319-326
    • /
    • 2015
  • This study investigates the behavioral characteristics and forms of phosphorus in the sediment according to the oxygen condition (aerobic/anaerobic). In the behavioral characteristics analysis, Al-P and Fe-P concentrations were the highest among the forms of inorganic phosphorus, and therefore had the strongest impact on sorption and release corresponding to environmental condition changes. In the experimental investigation of the inorganic forms of phosphorus in the sediment according to the oxygen condition, we determined that the forms of inorganic phosphorus did not greatly affect the sorption or release reaction because the distribution ratios of the inorganic forms remained constant corresponding to changes of dissolved oxygen (DO) conditions. In contrast, the forms of organic phosphorus in the sediments affected both sorption and release. Furthermore, labile-P and moderately labile-P forms were the major mechanisms of sorption in sediment. Moderately labile-P was the greatest contributor to phosphorus release action in sediment. As environmental changes are important for the behavioral characteristics of phosphorus in sediment, the forms of phosphorus should be considered to have a greater effect, especially in the organic phosphorus case. Therefore, based on the present study results, sediment evaluation aimed at controlling internal pollutants in reservoirs should include an examination of the forms of phosphorus present, as well as the release characteristics of environmental changes, which are influential factors of phosphorus control. Further research in this field is required.

A Fundamental Study on Composting of Garbage (음식물쓰레기의 퇴비화에 관한 기초적 연구)

  • Jeon, Byung-Gwan;Hur, Dang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.19-25
    • /
    • 1996
  • A fundamental study on composting garbage was performed in a laboratory scale of a high-speed composting reactor. Major parameters were moisture content, temperature and C/N ratio. The results are as follows; pH of the compost was the highest at moisture 60% and anaerobic condition occurred at 70%. It was, also, found that C/N ratio, caused a nitrogen loss due to an occurrence of plentiful $NH_3$. Under controlling Temperature, pH was the highest at $60^{\circ}C$ and an inverse effect for Composting occurred under excessive Temperature as pH at $70^{\circ}C$ was lower than that of soil. The variation of pH and C/N ratio was the lowest when C/N ratio was 25. The results obtained from composting garbage revealed that the best condition of composting occurred under 50 to 60% of moisture content, $60^{\circ}C$ of temperature, and 25 of C/N ratio. It is believed that composting may be finished with in 56 hours if an optimal condition is setting up.

  • PDF