• 제목/요약/키워드: Anaerobic Rumen Fungi

검색결과 20건 처리시간 0.023초

Effect of Fungal Elimination on Bacteria and Protozoa Populations and Degradation of Straw Dry Matter in the Rumen of Sheep and Goats

  • Li, D.B.;Hou, X.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권1호
    • /
    • pp.70-74
    • /
    • 2007
  • An in vitro study was carried out to investigate the differences in rumen microbes and fiber degradation capacity between sheep and goats. Three local male sheep and three Inner Mongolia male cashmere goats (aged 1.5 to 2 years; weight 25.0 to 32.0 kg) were each fitted with a permanent rumen cannula used to provide rumen fluid. Cycloheximide was used to eliminate rumen anaerobic fungi. The results showed that the quantities of fungal zoospores in the culture fluid of the control group were significantly greater in the sheep than in the goats; however, bacteria and protozoa counts were significantly higher in goats than in sheep. The digestibility of straw dry matter did not differ significantly between the two species before elimination of fungi, but tended to be higher for sheep (55.4%) than for goats (53.3%). The results also indicated that bacteria counts increased significantly after elimination of anaerobic fungi; however, the digestibility of straw dry matter significantly decreased by 12.1% and 8.6% for sheep and goats respectively. This indicated that the anaerobic fungi of the rumen played an important role in degradation of fiber.

Role and Potential of Ruminal Fungi in Fiber Digestion - Review -

  • Ushida, K.;Matsui, H.;Fujino, Yuko;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권6호
    • /
    • pp.541-550
    • /
    • 1997
  • Anaerobic chytridiomycete fungi are now well recognized as one of the major components of rumen microflora. Since the discovery of anaerobic fungi, the knowledge upon their morphology and physiology has been accumulated. It is certain that they gave roles in ruminal fiber digestion, although their quantitative contribution to rumen digestion is still unclear. Their role in fiber digestion is complicated by the dietary factors and the interaction with other microorganisms. We aim at reviewing such information in this article. Considerable attention gas been paid to the polysaccharidase of these fungi. Analysis on the fungal genes encoding these enzymes has been performed in several laboratories. This article also covers the genetical analysis of fungal polysaccharidases.

Production of Citrate by Anaerobic Fungi in the Presence of Co-culture Methanogens as Revealed by 1H NMR Spectrometry

  • Cheng, Yan Fen;Jin, Wei;Mao, Sheng Yong;Zhu, Wei-Yun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권10호
    • /
    • pp.1416-1423
    • /
    • 2013
  • The metabolomic profile of the anaerobic fungus Piromyces sp. F1, isolated from the rumen of goats, and how this is affected by the presence of naturally associated methanogens, was analyzed by nuclear magnetic resonance spectroscopy. The major metabolites in the fungal monoculture were formate, lactate, ethanol, acetate, succinate, sugars/amino acids and ${\alpha}$-ketoglutarate, whereas the co-cultures of anaerobic fungi and associated methanogens produced citrate. This is the first report of citrate as a major metabolite of anaerobic fungi. Univariate analysis showed that the mean values of formate, lactate, ethanol, citrate, succinate and acetate in co-cultures were significantly higher than those in the fungal monoculture, while the mean values of glucose and ${\alpha}$-ketoglutarate were significantly reduced in co-cultures. Unsupervised principal components analysis revealed separation of metabolite profiles of the fungal mono-culture and co-cultures. In conclusion, the novel finding of citrate as one of the major metabolites of anaerobic fungi associated with methanogens may suggest a new yet to be identified pathway exists in co-culture. Anaerobic fungal metabolism was shifted by associated methanogens, indicating that anaerobic fungi are important providers of substrates for methanogens in the rumen and thus play a key role in ruminal methanogenesis.

Effect of Grass Lipids and Long Chain Fatty Acids on Cellulose Digestion by Pure Cultures of Rumen Anaerobic Fungi, Piromyces rhizinflata B157 and Orpinomyces joyonii SG4

  • Lee, S.S.;Ha, J.K.;Kim, K.H.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권1호
    • /
    • pp.23-30
    • /
    • 2000
  • The effects of grass lipids and long chain fatty acids (LCFA; palmitic, stearic and oleic acids), at low concentrations (0.001~0.02%), on the growth and enzyme activity of two strains of anaerobic fungi, monocentric strain Piromyces rhizinflata B157 and polycentric strain Orpinomyces joyonii SG4, were investigated. The addition of grass lipids to the medium significantly (p<0.05) decreased filter paper (FP) cellulose digestion, cellulase activity and fungal growth compared to control treatment. However, LCFA did not have any significant inhibitory effects on fungal growth and enzyme activity, which, however, were significantly (p<0.05) stimulated by the addition of oleic acid as have been observed in rumen bacteria and protozoa. This is the first report to our knowledge on the effects of LCFA on the rumen anaerobic fungi. Continued work is needed to identify the mode of action of LCFA in different fungal strains and to verify whether these microorganisms have ability to hydrogenate unsaturated fatty acids to saturated fatty acids.

The Role of Rumen Fungi in Fibre Digestion - Review -

  • Ho, Y.W.;Abdullah, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권1호
    • /
    • pp.104-112
    • /
    • 1999
  • Since the anaerobic rumen fungi were discovered in the rumen of a sheep over two decades ago, they have been reported in a wide range of herbivores fud on high fibre diets. The extensive colonisation and degradation of fibrous plant tissues by the fungi suggest that they have a role in fibre digestion. All rumen fungi studied so far are fibrolytic. They produce a range of hydrolytic enzymes, which include the cellulases, hemicellulases, pectinases and phenolic acid esterases, to enable them to invade and degrade the lignocellulosic plant tissues. Although rumen fungi may not seem to be essential to general rumen function since they may be absent in animals fed on low fibre diets, they, nevertheless, could contribute to the digestion of high-fibre poor-quality forages.

The Effect of Saturated Fatty Acids on Cellulose Digestion by the Rumen Anaerobic Fungus, Neocallimatix frontalis C5-1

  • Ha, J.K.;Lee, S.S.;Gao, Z.;Kim, C.-H.;Kim, S.W.;Ko, Jong Y.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권7호
    • /
    • pp.941-946
    • /
    • 2001
  • The effects of various concentrations of saturated fatty acids (SFA; caprylic, capric and stearic acids) on the growth of the anaerobic fungus, Neocallimastix frontalis C5-1 isolated from the rumen of a Korean native goat were investigated. At higher concentrations of fatty acids (0.1%, w/v), the addition of SFA strongly decreased filter paper (FP) cellulose digestion and polysaccharide-degrading enzyme activity. The sensitivity of the rumen anaerobic fungus to the added fatty acids increased in the following order: caprylic ($C_{8:0}$)>capric($C_{10:0}$)>stearic($C_{18:0}$) acid, although stearic acid had no significant (p<0.05) inhibitory effects at any of the concentrations tested. However, the addition of SFA at lower concentrations (0.01 and 0.001% levels), did not inhibit FP cellulose degradation and enzyme activity. Furthermore, although these parameters were slightly stimulated by the addition of SFA, they were not statistically different from control values. This is the first report examining the effects of fatty acids on anaerobic gut fungi. We found that the lower levels of fatty acids used in this experiment were able to stimulate the growth and specific enzyme activities of rumen anaerobic fungi, whereas the higher levels of fatty acids were inhibitory with respect to fungal cellulolysis.

COLONIZATION OF ALKALI-TREATED FIBROUS ROUGHAGES BY ANAEROBIC RUMEN FUNGI

  • Wuliji, T.;McManus, W.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제1권2호
    • /
    • pp.65-71
    • /
    • 1988
  • This study reports light and electron microscope examination of rumen fungal colonization of alkali-treated roughage feeds incubated in decron bags in the rumen of cannulated sheep for varying time intervals. Six roughages, pre-treated with ammonium hydroxide or sodium hydroxide at 4% (w/w) level were examined together with untreated control samples. Alkali pre-treatment was associated with an earlier and more pronounced fungal colonization than all control roughages. Sodium hydroxide pre-treatment was significantly more effective than ammonium hydroxide in improving the susceptibility of roughages to rumen fungal colonization and studies by SEM showed that the pre-treatment permitted greater penetration of feeds by fungi. Sodium hydroxide pre-treatment also significantly increased dry matter disappearance from feed held in Dacron bags in the rumen with all feeds except Lucerne stem. It is not known to what extent fungal activity contributed to increased breakdown of the feeds.

한우 및 산양의 장내 섬유소 분해 혐기 곰팡이의 분리 및 특성 구명 (Isolation and Characterization of Cellulolytic Anaerobic Fungi from the Guts of the Hanwoo Cattle and the Korean Native Goat)

  • 김창현;이성실
    • Journal of Animal Science and Technology
    • /
    • 제45권6호
    • /
    • pp.1019-1030
    • /
    • 2003
  • 본 연구는 국내의 재래 반추동물인 재래산양과 한우의 장내에 서식하며 강력한 섬유소를 분해하는 혐기 곰팡이를 탐색하고 분리하여 섬유소 분해 특성을 구명하고자 실시되었다. 산양의 반추위로부터 16종과 한우의 십이지장 소화물로부터 5종의 혐기 곰팡이를 분리하여 총 21종의 혐기성 곰팡이가 분리되었다. 섬유소 분해효소의 활력을 측정하여 그 중 섬유소 분해력이 높은 4종의 곰팡이에 대하여 광학현미경에 의한 형태학적 관찰을 기초로 동정 작업을 수행하였다. NLRI-M003은 monocentric 성장형태, 구형의 포자낭, filamentous rhizoid 및 유주자의 flagella가 다수인 Neocallimastix sp., NLRI-M014는 monocentric 성장형태, 방추형의 포자낭, filamentous rhizoid 및 유주자의 flagella가 단수인 Piromyces sp.로, NLRI-T004는 monocentric 성장형태, 난형의 포자낭, filamentous rhizoid 및 유주자의 fagella 수가 다수인 Neocallimastix sp.로 각각 확인되었다. NLRI-M001은 Orpinomyces sp. 와 유사한 것으로 추측되나 지금까지 밝혀진 곰팡이 이외에 다른 밝혀지지 않은 곰팡이가 존재할 가능성이 있을 것으로 평가되어 더욱 더 세부적인 조사가 필요하다고 사료되었다. 혐기 곰팡이의 섬유소 분해 특성을 조사하기 위해 산양의 반추위로부터 분리된 NLRI-M003 혐기 곰팡이 배양액을 2% 첨가하여 혼합 반추위 미생물의 in vitro 건물 분해율을 볏짚과 filter paper를 기질로 하여 조사하였다. 모든 처리구에서 혐기 곰팡이 배양액을 첨가한 첨가구가 무첨가구에 비하여 볏짚의 경우 약 4%이상(p〈0.05) 그리고 filtre paper를 기질로 사용시 11% 이상(p〈0.001)의 분해율이 증가하였다. 또한 CMCase와 xylanase 효소의 활력도 첨가구에서 증가하였으며 특히 반추위 곰팡이는 강력한 xylanase 효소활력이 높음을 보여주었다.

Effects of Non-ionic Surfactants on Enzyme Distributions of Rumen Contents, Anaerobic Growth of Rumen Microbes, Rumen Fermentation Characteristics and Performances of Lactating Cows

  • Lee, S.S.;Ahn, B.H.;Kim, H.S.;Kim, C.H.;Cheng, K.-J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권1호
    • /
    • pp.104-115
    • /
    • 2003
  • A series of experiments was carried out to determine the possibility for the non-ionic surfactant (NIS) as a feed additive for ruminant animals. The effect of the NIS on (1) the enzyme distribution in the rumen fluids of Hereford bulls, (2) the growth of pure culture of rumen bacteria and (3) rumen anaerobic fungi, (4) the ruminal fermentation characteristics of Korean native cattle (Hanwoo), and (5) the performances of Holstein dairy cows were investigated. When NIS was added to rumen fluid at the level of 0.05 and 0.1% (v/v), the total and specific activities of cell-free enzymes were significantly (p<0.01) increased, but those of cell-bound enzymes were slightly decreased, but not statistically significant. The growth rates of ruminal noncellulolytic species (Ruminobacter amylophilus, Megasphaera elsdenii, Prevotella ruminicola and Selenomonas ruminantium) were significantly (p<0.01) increased by the addition of NIS at both concentrations tested. However, the growth rate of ruminal cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Butyrivibrio fibrisolvens) were slightly increased or not affected by the NIS. In general, NIS appears to effect Gram-negative bacteria more than Gram-positive bacteria; and non-cellulolytic bacteria more than cellulolytic bacteria. The growth rates of ruminal monocentric fungi (Neocallimastix patriciarum and Piromyces communis) and polycentric fungi (Orpinomyces joyonii and Anaeromyces mucronatus) were also significantly (p<0.01) increased by the addition of NIS at all concentrations tested. When NIS was administrated to the rumen of Hanwoo, Total VFA and ammonia-N concentrations, the microbial cell growth rate, CMCase and xylanase activities in the rumen increased with statistical difference (p<0.01), but NIS administration did not affect at the time of 0 and 9 h post-feeding. Addition of NIS to TMR resulted in increased TMR intake and increased milk production by Holstein cows and decreased body condition scores. The NEFA and corticoid concentrations in the blood were lowered by the addition of NIS. These results indicated that the addition of NIS may greatly stimulate the release of some kinds of enzymes from microbial cells, and stimulate the growth rates of a range of anaerobic ruminal microorganisms, and also stimulate the rumen fermentation characteristics and animal performances. Our data indicates potential uses of the NIS as a feed additive for ruminant animals.