• 제목/요약/키워드: Anaerobic Microbes

검색결과 69건 처리시간 0.023초

혐기조건하 젖산균에서 알루미늄의 축적 (Accumulation of Aluminum to Lactic Acid Bacteria under Anaerobic Conditions)

  • 박성수
    • 한국식품영양학회지
    • /
    • 제11권6호
    • /
    • pp.600-605
    • /
    • 1998
  • Present study was investigate to evaluate the aluminum absorption effect on lactic acid bacteria(Lactobacillus acidophilus ATTC 4356, Lactogacillus bulgaricus ATTC 11842, Lactobacillus casei IFO 3533, and Streptococcus thermophilus KCTC 2185 ; LAB) and Clostridium perfringens ATCC 3627 (CP) in artificial intestinal tract. Their growth rate, aluminum accumulation and cellular distribution was studied under anaerobic broth system. All of above microbes were inhibited by adding 10 to 100ppm of aluminum. The degree of aluminum in LAB (Lactobacillus acidophilus ATCC 4356, Lactobacillus bulgaricus ATCC 11842, Lactobacillus casei IFO 3533, and Streptococcus thermophilus KCTC 2185) was higher than of CP. The largest amount of aluminum was accumulated in Lactobacillus bulgaricus ATCC 11842. Aluminum accumulation in LAB was distributed in 49.1% at cell wall, 27.3% at plasma membrane, and 23.6% at cytoplasm, respectively. This study suggests that LAB might help to eliminate the ingested aluminum in intestinal tract.

  • PDF

개선된 고율혐기성 공정을 이용한 수산물 가공폐수처리 (Treatment of Seafood Wastewater using an Improved High-rate Anaerobic Reactor)

  • 최병영;최용범;한동준;권재혁
    • 한국산학기술학회논문지
    • /
    • 제15권12호
    • /
    • pp.7443-7450
    • /
    • 2014
  • 본 연구는 높은 상향유속을 가지는 고율 혐기성 공정의 단점을 해결하고자 반응조의 구조개선을 통한 고율 혐기성 반응조의 성능평가를 실시하였다. 개선된 반응조는 반응조의 직경을 조절하여 반응조를 세부분으로 구분하여 제작하였다. 구조 변경된 반응조의 성능평가 결과, 반응조 하부의 단회로 및 고형물 축적현상과 미생물 유출을 방지하여 반응조 내 미생물을 안정적으로 유지할 수 있었다. 혐기성 소화 과정에서 반응조내 pH와 알카리도 상승은 유기물 분해과정 및 biogas의 일부 재용해에 의해 생성된 중탄산염에 기인한 것으로 판단되며, 높은 유기물 제거효율을 이루기 위해서는 HRT 9 hr 이상, 유기물 부하 $10.0kgTCODcr/m^3{\cdot}d$ 이하 범위로 운전하여야 한다. 혐기성 소화과정에서 발생하는 메탄가스는 유기물 부하 $7.7kgTCODcr/m^3{\cdot}d$ 이상에서 65~83 %의 높은 함량을 나타냈으며, CODcr 제거당 메탄 발생량은 $0.10{\sim}0.23m^3CH_4/kgCOD_{rem}.$으로 STP 상태의 이론적 메탄가스 발생량(0.35)보다 낮은 것으로 조사되었으며, 고율 혐기성 공정후단에 질소제거를 위한 고도처리 공정이 필요한 것으로 판단된다.

Rumen Manipulation to Improve Animal Productivity

  • Santra, A.;Karim, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권5호
    • /
    • pp.748-763
    • /
    • 2003
  • Anaerobic rumen microorganisms mainly bacteria, protozoa and fungi degrade ligno-cellulosic feeds consumed by the ruminants. The ruminants in developing countries are predominantly maintained on low grade roughage and grazing on degraded range land resulting in their poor nutrient utilization and productivity. Hence, manipulation of rumen fermentation was tried during last two decades to optimize ruminal fermentation for improving nutrient utilization and productivity of the animals. Modification of rumen microbial composition and their activity was attempted by using chemical additives those selectively effect rumen microbes, introduction of naturally occurring or genetically modified foreign microbes into the rumen and genetically manipulation of existing microbes in the rumen ecosystem. Accordingly, rumen protozoa were eliminated by defaunation for reducing ruminal methane production and increasing protein outflow in the intestine, resulting in improve growth and feed conversion efficiency of the animals. Further, Interspecies trans-inoculation of rumen microbes was also successfully used for annulment of dietary toxic factor. Additionally, probiotics of bacterial and yeast origin have been used in animal feeding to stabilize rumen fermentation, reduced incidence of diarrhoea and thus improving growth and feed conversion efficiency of young stalk. It is envisaged that genetic manipulation of rumen microorganisms has enormous research potential in developing countries. In view of feed resource availability more emphasis has to be given for manipulating rumen fermentation to increase cellulolytic activity for efficient utilization of low grade roughage.

돈분의 2단계 혐기발효시 산생성 단계에서의 유기물 부하율과 체류시간에 따른 휘발성지방산의 생산량 (Effect of Organic Loading Rate and Hydralic Retention Time on the Volatile Fatty Acid Production in 2- Step Anaerobic Fermentation System of Swine Wastes)

  • 김범석;이상락;맹원재
    • 한국축산시설환경학회지
    • /
    • 제4권2호
    • /
    • pp.167-174
    • /
    • 1998
  • It is known that the anaerobic fermentation of organic matter (OM) is divided into 2 phases, acidogenic phase in which OM is digested into volatile fatty acid (VFA), and methanogenic phase where the produced VFA is converted to CH4 and CO2. In a natural fermenting procedure, these 2 phases occur at the same time. However the total production of end products (methane) may be limited if these 2 phases occur at the same time. This is believed to be due to the difference in growth rate, substrate-utilizing efficiency and favorable environment for each microbes (acidogens and methanogens), involved in each phase. It is therefore suggested for the maximum recycling of organic waste (such as animal waste) through providing 2 different steps in fermenting procedure, acidogenic phase and methanogenic phase, in each case the activity of involved microbes can be maintained at the maximum level. The results obtained from these experiments are summarized as follows : The loading rates of swine waste were made through 2.5, 5 and 10 gVS / l / d to identify its acidogenic fermenting character in this study. The VFA yield was maximized at 10 gVS / l / d of loading rate. On the basis of this study was executed to identify the optimum HRT of 1, 2 and 4 days at 10 gVS / l / d of loading rate in acidogenic phase. The maximum VFA yield was obtained at 1 days of HRT.

  • PDF

Effect of Fungal Elimination on Bacteria and Protozoa Populations and Degradation of Straw Dry Matter in the Rumen of Sheep and Goats

  • Li, D.B.;Hou, X.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권1호
    • /
    • pp.70-74
    • /
    • 2007
  • An in vitro study was carried out to investigate the differences in rumen microbes and fiber degradation capacity between sheep and goats. Three local male sheep and three Inner Mongolia male cashmere goats (aged 1.5 to 2 years; weight 25.0 to 32.0 kg) were each fitted with a permanent rumen cannula used to provide rumen fluid. Cycloheximide was used to eliminate rumen anaerobic fungi. The results showed that the quantities of fungal zoospores in the culture fluid of the control group were significantly greater in the sheep than in the goats; however, bacteria and protozoa counts were significantly higher in goats than in sheep. The digestibility of straw dry matter did not differ significantly between the two species before elimination of fungi, but tended to be higher for sheep (55.4%) than for goats (53.3%). The results also indicated that bacteria counts increased significantly after elimination of anaerobic fungi; however, the digestibility of straw dry matter significantly decreased by 12.1% and 8.6% for sheep and goats respectively. This indicated that the anaerobic fungi of the rumen played an important role in degradation of fiber.

2단 혐기성소화조의 슬러지 반송율 변화를 통한 Bio-Gas 생산 증대 (The Improvement of Bio-gas Production through the Change of Sludge-Recycle Ratio with Two-Stage Anaerobic Digestion)

  • 권구호;이태우;정용준;민경석
    • 한국환경과학회지
    • /
    • 제23권6호
    • /
    • pp.1061-1066
    • /
    • 2014
  • This study has cross checked the change of internal sludge-recycle in Anaerobic-Digestion, and researched about not only the improvement of Bio-gas production from the digested sludge but also the efficient method of sludge minimization. Ultimate object of the study is to reduce the amount of sludge by the improved efficiency of contact with the organic-matter and the microbes in Anaerobic-Digestion. The sludge-recycle fluidized sludge layer and raised the activity of the sludge, the optimal sludge-recycle ratio, VS and COD removal ratio were 1,000%, 28.2% and 27.7%, respectively. Through these results of this study, it may be of use to treat waste sludge by the sludge-recycle ratio in terms of minimization and circulation of resources.

유용미생물 (EM, Effective Microorganisms)의 활용 현황 (Current Status of EM (Effective Microorganisms) Utilization)

  • 문윤희;이광배;김영준;구윤모
    • KSBB Journal
    • /
    • 제26권5호
    • /
    • pp.365-373
    • /
    • 2011
  • Effective Microorganisms (EM), a fermented medium developed by Professor Higa at the University of the Ryukyus, is a mixed culture containing dozens of microorganisms which are beneficial to nature including people, animals, plants and many microbial species in environment. EM is known to contain more than 80 kinds of anaerobic or aerobic microbes including photosynthetic bacteria, lactic acid bacteria, yeast, actinomycetes, fungi and so on, with yeast, lactic acid bacteria and photosynthetic bacteria as the main species of EM. Antioxidant effect generated by the concert of complex coexistence and coprosperity among these microbes is considered to be the main source of EM benefits. Currently, EM is earning an increasing attention with applications in agriculture, forestry, animal husbandry, fisheries, environment and medicine among others. At the same time, however, a quantitative interpretation of EM system based on a mixed culture model needs efforts from biochemical engineers for efficient production and further promotion of EM. In this paper, we describe the functions of major microbes in EM and current researches and applications of EM in agriculture, forestry, animal husbandry, fisheries, environment and medicine.

2단 혐기성소화공정에서 반송변화를 통한 Bio-gas 생산량 증대 및 감량화 (Change of Sludge-Recycle Ratio for the Bio-gas Production Improvement and Minimization with Two-Stage Anaerobic Digestion)

  • 이태우;양해영;도중호
    • 한국산업융합학회 논문집
    • /
    • 제15권3호
    • /
    • pp.83-86
    • /
    • 2012
  • This study have cross checked the change of internal sludge-recycle in Full-scale Anaerobic-Digestion, and researched about not only the improvement of Bio-gas production from the digested sludge but also the efficient method of sludge minimization. Ultimate aim of the study is to reduce the amount of sludge by the improved efficiency of contact with the organic-matter and the microbes in Anaerobic-Digestion. The sludge-recycle fluidized sludge layer and raised the activity of the sludge, The sludge-recycle ratio of optimum was 500%, VS and COD removal ratio respectively appeared with 67.8% and 70.4%. Through these result of this study, it may be positive view to treat waste sludge by the sludge-recycle ratio in terms of minimization and circulation of resources.

한반도 주변 해역으로부터 혐기성 미생물의 분리 및 분리 미생물의 특성 분석 (Isolation and characterization of anaerobic microbes from marine environments in Korea)

  • 김원덕;이정현;권개경
    • 미생물학회지
    • /
    • 제52권2호
    • /
    • pp.183-191
    • /
    • 2016
  • 유기산을 생산하는 발효미생물을 획득하기 위해 갯벌, 심해, 염전 등의 퇴적토와 해초시료 등의 시료에 대해 methanogen 배지, acetogen 배지, Clostridium용 배지 등을 이용하여 농후 배양을 실시하였다. 총 8개 시료로부터 65주의 혐기성 미생물을 분리하였으며 이 중 신규성이 높거나 활용성이 높다고 알려진 11종에 대해 계통분석, 성장 양식(growth pattern), 유기산 생산 평가 등을 시도하였다. 분석이 수행된 균주 중 Bacteroidia 강에 속하는 1주 외에는 모두 Clostridia 강에 속하였으며 성장속도는 $1.2h^{-1}$ 이상이었다. 분석이 수행된 7종 중 6종은 아세트산을 생성하였으며, 부가적으로 2균주는 부틸산을, 4균주는 개미산을 생산하였다. 또한 MCWD5 균주는 제공된 포도당의 약 40%를 세포외 고분자물질로 전환시키는 것으로 나타났다. 본 연구를 통하여 국내 연안해역에서 분리된 신규 혐기성 미생물들은 유기산, 고분자 다당류를 생산하는 등 높은 응용성을 지님을 확인할 수 있었다.