• Title/Summary/Keyword: Anaerobic Fermentation

Search Result 312, Processing Time 0.028 seconds

Effect of operational pH on anaerobic hydrogen fermentation of food waste (음식폐기물의 혐기성 수소 발효시 운전 pH의 영향)

  • Lee, Chae-Young;Lee, Se-Wook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.73-78
    • /
    • 2011
  • The pH is one of the most important factors affecting metabolism pathway and activity of hydrogen producing bacteria. The effect of operational pH on anaerobic hydrogen fermentation of food waste was evaluated at mesophilic condition. In this batch experiment, the initial pH was 8.0 and the operational pH was controlled at 4.7~7.0 by the addition of 5N KOH solutions. At the operational pH of 4.7, the lag phase and the maximum hydrogen production were 47.9h and 534.4 mL, respectively. The lag phase and the maximum hydrogen production were decreased as the operational pH increased. At the operational pH of 7.0, the lag phase and the maximum hydrogen production were 4.2 h and 213.8 mL, respectively.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(III): Design and Operation Guideline (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(III) 설계 및 운전 지침(안) 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.99-111
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. Based on the results obtained during the field surveys, the overall design and operation guidelines for bio-gasification facilities, monitoring items, cycle and commissioning period were presented. According to the flow of anaerobic digestion process, Various design factors for bio-gasification facilities were proposed in this study. When designing the initial anaerobic digestion capacity, 10 ~ 30% of the treatment capacity was applied considering the discharge characteristics by the incoming organic wastes. At the import storage hopper process, limit concentration of transporting organic wastes was limited to TS 10 % or less, and limit concentration of inhibiting factor was suggested in operation of anaerobic digester. In addition, organic loading rate (OLR) was shown as $1.5{\sim}4.0kgVS_{in}/(m^3{\cdot}day)$ for the combined bio-gasification facilities of animal manure and food wastes. Desulfurization and dehumidification methods of biogas from anaerobic digestor and proper periods of liquifization tank were suggested in design guideline. It is recommended that the operating parameters of the biogasification facilities to be maintained at pH (acid fermentation tank 4.5~6.5, methane fermentation tank 6.0~8.0), temperature variation range within $2^{\circ}C$, management of volatile fatty acid and ammonia concentration less than 3,000 mg/L, respectively.

Effect of fermented spent instant coffee grounds on milk productivity and blood profiles of lactating dairy cows

  • Choi, Yongjun;Rim, Jongsu;Lee, Honggu;Kwon, Hyunchul;Na, Youngjun;Lee, Sangrak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1007-1014
    • /
    • 2019
  • Objective: This study was conducted to evaluate the fermentation characteristics under low mesophilic temperature of spent instant coffee ground (SICG) and to estimate the effect of fermented SICG (FSICG) as alternative feed ingredient on milk productivity of dairy cows. Methods: In the fermentation trial, fermentation of SICG was performed to investigate changes in characteristics using the microbial mixture (Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis = 1:1:1) for 21 days at $20^{\circ}C$ under anaerobic conditions. Molasses was added at 5% of dry mass. In the animal trial, eighteen Holstein Friesian cows were used to evaluate the nutritive value of the FSICG which was fermented for 14 days under the same condition as the fermentation trial. Results: In the fermentation trial, the dry matter (DM) and organic matter content linearly decreased with fermentation time (p<0.001 and p = 0.008, respectively). The acid detergent insoluble nitrogen content linearly decreased with fermentation time (p = 0.037). The microorganism counts linearly increased for Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis across fermentation time (p<0.001). In the animal trial, the DM intake of the control and FSICG treatment were not significantly different, as were milk yield, 4% fat corrected milk, fat-protein corrected milk, and feed to milk conversion content. Fat, protein, lactose, non-fat solids, milk urea nitrogen, and somatic cell counts were also not significantly different in milk composition between treatments. Conclusion: FSICG should be considered a sufficient substitute for cottonseed as a feed component, and 5% DM of a dietary FSICG level was appropriate for dairy cow diets.

Effects of Supplementation of Synbiotic Co-cultures Manufactured with Anaerobic Microbes on In Vitro Fermentation Characteristics and In Situ Degradability of Fermented TMR (혐기성 미생물로 제조한 synbiotics 혼합배양물의 첨가가 발효 TMR의 발효특성과 소실률에 미치는 영향)

  • Lee, Shin-Ja;Shin, Nyeon-Hak;Hyun, Jong-Hwan;Kang, Tae-Won;An, Jung-Jun;Jung, Ho-Sik;Moon, Yea-Hwang;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1538-1546
    • /
    • 2009
  • This study was conducted to estimate the in vitro fermentation characteristics and in situ degradabilities of total mixed rations fermented by the synbiotic co-cultures composed of various anaerobic microorganisms in the rumen of cow. Seventy two TMR bags (4 treatments $\times$ 6 fermentation days $\times$ 3 replications) were manufactured for in vitro and in situ experiments. The experiment was composed of four treatments including the control, the mould and bacteria synbiotics (T1), the mould and yeast synbiotics (T2) and the bacteria and yeast synbiotics (T3). Each treatment had six fermentation days (1, 3, 5, 7, 14, 21 day) with three replications. Two rumen cannulated Holstein cows (550 ㎏ of mean body wt) were used for in situ trial, and a total of 96 nylon bags were retrieved from the rumen according to eight fermentation times (1, 3, 6, 9, 18, 24, 48 and 72 hr). The mean fermentation temperatures of TMRs by supplementation of anaerobic micoorganism co-cultures ranged from $22.97^{\circ}C$ to $26.07^{\circ}C$, and tended to increase steadily during the entire period. pH values of the F-TMRs ranged from 4.39 to 4.98 and tended to decrease with the extension of the fermentation period, and decreased by supplementation of synbiotics (p<0.05). The ammonia concentrations of F-TMRs were not affected by addition of synbiotic co-cultures during the early fermentation period (within 7 days), but was lowest (p<0.05) in T3 during the late fermentation periods (after 14 days). Lactic acid concentration of F-TMR was lowest in T3 at 1 day of fermentation, but was not different from treatments in the other fermentation days. Microbial growth rates of F-TMR reached a peak at 7 days of fermentation, and afterward tended to decrease. In in situ experiment, the DM disappearance rates were higher in T1 than the control during early fermentation times (within 3 hours), but was vice versa at 48 hours of fermentation (p<0.05). There was no significant difference in effective DM degradability among treatments. NDF and ADF disappearance rates in situ were similar to those of DM. From the above results, the supplementation of synbiotics, particularly the mould and bacteria synbiotics, resulted in improving the pH and concentration of lactic acid of F-TMR as parameters of fermentation compare to the control, and also had higher in situ disappearance rates of DM, NDF and ADF than the control at early fermentation time. However, effective DM degradability was not affected by supplementation of synbiotics.

Comparison of Rabbit Caecal Content and Rabbit Hard Faeces as Source of Inoculum for the In vitro Gas Production Technique

  • Bovera, Fulvia;D'Urso, Simona;Di Meo, Carmelo;Piccolo, Giovanni;Calabro, Serena;Nizza, Antonino
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1649-1657
    • /
    • 2006
  • In order to find an alternative source of inoculum to caecal content for studying the fermentation activity of rabbit hindgut, caecal content and faeces of 25 hybrid Hyla rabbits were used as inocula for an in vitro gas production trial. About 1 g of three substrates (dehydrated alfalfa meal, dehydrated beet pulp, barley) was weighed, in quadruplicate per inoculum, in 120 ml bottles; 75 ml of anaerobic medium and 4 ml of reducing solution were added and bottles were placed at $39^{\circ}C$. Caecal content and faeces were diluted respectively 1:2 (CI) and 1:8 (FI) with anaerobic medium and were introduced in the respective bottles (10 ml). Gas production was recorded 20 times at 2-24 h intervals throughout fermentation (96 h). The fermentation characteristics (i.e. degraded organic matter, OMd; potential gas production, A; fermentation rate, Rmax; time at which it is reached, Tmax; pH, volatile fatty acid, VFA) were studied by inoculum and feedstuffs. The feedstuffs, according to their chemical composition, showed very different fermentation characteristics. In particular, OMd, A and Rmax allowed feedstuff classification as follows: barley>beet pulp>alfalfa. The inocula differ (p<0.05) in Tmax, were higher for CI (15.53 vs. 11.96 h) and in VFA production. In particular, CI produced higher levels of acetate (38.9 vs. 33.4 mM/g OM incubated, p<0.01) and isobutyrate (0.72 vs. 0.42, p<0.01) but less propionate (7.1 vs. 10.3, p<0.01) and butyrate (11.3 vs. 14.0, p<0.01). However, the trend of gas production, similar for the inocula according to the fermented substrate, and the good regression equation to estimate some caecal fermentation parameters from faeces suggest that, after standardisation, the faeces could be used as an alternative inoculum for gas tests in rabbit.

Effects of citrus pulp, fish by-product and Bacillus subtilis fermentation biomass on growth performance, nutrient digestibility, and fecal microflora of weanling pigs

  • Noh, Hyun Suk;Ingale, Santosh Laxman;Lee, Su Hyup;Kim, Kwang Hyun;Kwon, Ill Kyong;Kim, Young Hwa;Chae, Byung Jo
    • Journal of Animal Science and Technology
    • /
    • v.56 no.3
    • /
    • pp.10.1-10.7
    • /
    • 2014
  • An experiment was conducted to investigate the effects of dietary supplementation with citrus pulp, fish by-product, and Bacillus subtilis fermentation biomass on the growth performance, apparent total tract digestibility (ATTD) of nutrients, and fecal microflora of weanling pigs. A total of 180 weaned piglets (Landrace ${\times}$ Yorkshire ${\times}$ Duroc) were randomly allotted to three treatments on the basis of body weight (BW). There were six replicate pens in each treatment with 10 piglets per pen. Dietary treatments were corn-soybean meal-based basal diet supplemented with 0 (control), 2.5, and 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass. The isocaloric and isoproteineous experimental diets were fed in mash form in two phases (d 0 ~ 14, phase I and d 15 ~ 28, phase II). Dietary treatments had significant linear effects on gain to feed ratio (G:F) in all periods, whereas significant linear effects on ATTD of dry matter (DM), gross energy (GE), and ash were only observed in phase I. Piglets fed diet supplemented with 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass showed greater (p < 0.05) G:F (phase I, phase II, and overall) as well as ATTD of DM, GE, and ash (phase I) than pigs fed control diet. Dietary treatments also had significant linear effects on total anaerobic bacteria populations by d 14 and 28. In addition, piglets fed diet supplemented with 5.0% citrus pulp, fish by-product and B. subtilis fermentation biomass showed greater (p < 0.05) fecal total anaerobic bacteria populations (d 14 and 28) than pigs fed control diet. Dietary treatments had no significant effects (linear or quadratic) on average daily gain (ADG), average dial feed intake (ADFI; phase I, phase II, and overall), or fecal populations of Bifidobacterium spp., Clostridium spp., and coliforms (d 14 and 28). These results indicate that dietary supplementation with 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass has the potential to improve the feed efficiency, nutrient digestibility, and fecal microflora of weanling pigs.

Anaerobic Acid and Methane Fermentation using Paper Wastes (폐지를 이용한 혐기성 산 발효 및 메탄발효 특성)

  • 조건형;김중곤;김성준;김시욱
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.318-323
    • /
    • 2003
  • This study was carried out to investigate the possibility of reusing newspaper or paperbox waste by methane fermentation. When 15 g of newspaper and box wastes were digested separately for 24 days by batch fermentation, the amount of total organic acids produced were 2461 and 4978 mg/L, respectively. The tCOD removal rates were found to be 60.9 and 62.4%, respectively. In addition, the removal efficiencies of total solid were 34.8 and 33.4%, and those of volatile solid were 40.0 and 39.2%, respectively. During this period, the amounts of biogas produced were 6.95 and 6.43 L. In a semicontinuous reaction, tCOD removal efficiencies for newspaper and box wastes were 64.7 and 65.0%, respectively, after 14 days of digestion. After 25 days, which were needed to stabilize the methane fermentation, the amounts of biogas produced daily were 0.31 and 0.30 L/g.dry wt, respectively. Methane contents were 57.3 and 56.2%, respectively, and the pHs in the anaerobic acidogenic and methanogenic fermenters were 5.0 and 7.5, respectively.

Photoproduction of Hydrogen from Acetate by Rhodopseudomonas: Effect of Culture Conditions and Sequential Dark/Light Fermentation

  • Oh, You-Kwan;Seol, Eun-Hee;Park, Sung-Hoon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.422-427
    • /
    • 2003
  • Rhodopseudomonas palustris P4 can produce $H_2$ either from CO by water-gas shift reaction or from various sugars by anaerobic fermentation. Fermentative $H_2$ production by P4 is fast, but its yield is relatively low due to the formation of various organic acids. In order to increase $H_2$ production yield from glucose, P4 was investigated for the photo-fermentation of acetate which is a major by-product of fermentative $H_2$ production. Experiments were performed in batch modes using both light-grown and dark-grown cells. When the dark-grown P4 was challenged with light and acetate, $H_2$ was produced with the consumption of acetate after a lag period of 25 h. $H_2$ production was inhibited when a nitrogen source, especially ammonium, is present. When the dark-fermentation broth containing acetate was adopted for photo-fermentation with light-grown cells, $H_2$ production and concomitant acetate consumption occurred without a lag period. The $H_2$ yield was estimated as 2.4 - 2.8 mol $H_2/mol$ acetate and the specific $H_2$ production rate was as 9.8 ml $H_2/g$ cell${\cdot}$h, The fact that a single strain can perform both dark- and light-fermentation gives a great advantage in process development Compared to a one-step dark-fermentation, the combined dark- and light-fermentation can increase the $H_2$ production yield on glucose by two-fold.

  • PDF

Effects of Temperature in Anaerobic Nitrogen Removal Process from Piggery Waste : Activities in Ranges of Low Field-temperature (돈사폐수의 혐기성 질소제거에 있어서 온도의 영향 : 낮은 현장 온도범위에서의 활성)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.258-263
    • /
    • 2006
  • ANAMMOX (Anaerobic ammonium oxidation) reactor, which was cultivated ANAMMOX bacteria in mesophilic condition ($35^{\circ}C$), was operated to investigate the effects of temperature. In $20{\sim}30^{\circ}C$ of operation condition, which was assumed as field-temperature, total N removal and $NH_4-N$ removal rate were declined from about 2.50 and $1.27kg\;N/{m^3}_{reactor}-day$ (0.06 and 0.03 kg N/kgVSS/day) to 1.62 and $0.41kg\;N/{m^3}_{reactor}-day$ (0.04 and 0.01 kg N/kgVSS/day), In this range of temperature, ANAMMOX had very low activities but acid fermentation bacteria and denitrifiers, which were competitors of substrates, had high activities relatively. Though operation temperature was higher than inhibition condition for two months, ANAMMOX activities could not been recovered once they were inhibited by low temperature. This fact was resulted from very slow doubling time of ANAMMOX bacteria. This study shows that maintenance device of optimal temperature is necessary required in field application of ANAMMOX.

Optimization of Bioelectrochemical Anaerobic Digestion Process Using Response Surface Methodology (반응표면분석법을 활용한 생물전기화학적 혐기성 소화 공정의 최적화)

  • LEE, CHAE-YOUNG;CHOI, JAE-MIN;HAN, SUN-KI
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.5
    • /
    • pp.409-415
    • /
    • 2015
  • This study was performed to optimize the integrated anaerobic digestion (AD) and microbial electrolysis cells (MECs) for the enhanced hydrogen production. The optimum operational conditions of integrated AD and MECs were obtained using response surface methodology. The optimum substrate concentration and operational pH were 10 g/L and 6.8, respectively. In the confirm test, 1.43 mol $H_2/mol$ hexose was achieved, which was 2.5 times higher than only AD. After 40 to 60 hour at seeding, the volatile fatty acids (VFAs) in reactor of AD were not changed. However the VFAs of reactor of AD-MECs were reduced by 61.3% (acetate: 76.4%, butyrate: 50.0%, lactate: 55.0%).