• 제목/요약/키워드: An antifungal activity

검색결과 435건 처리시간 0.025초

Antifungal Activity of an Endophytic Fungus Aspergillus versicolor DYSJ3 from Aphanamixis grandifolia Blume against Colletotrichum musae

  • Li, Xiaoyu;Wu, Yateng;Liu, Zhiqiang
    • Mycobiology
    • /
    • 제49권5호
    • /
    • pp.498-506
    • /
    • 2021
  • An endophytic fungus strain DYSJ3 was isolated from a stem of Aphanamixis grandifolia Blume, which was identified as Aspergillus versicolor based on the morphological characteristics, internal transcribed spacer (ITS) and calmodulin gene sequences analyses. A. versicolor DYSJ3 exhibited strong antagonistic activity against Colletotrichum musae, C. gloeosporioides and Fusarium oxysporum f. sp. cubense with the inhibition rates of 61.9, 51.2 and 55.3% respectively. The antifungal metabolites mainly existed in the mycelium of A. versicolor DYSJ3, and its mycelial crude extract (CE) had broad-spectrum antifungal activities against plant pathogenic fungi. The CE had a good thermal stability, and the inhibition rate of 100 mg/mL CE against C. musae was above 70.0% after disposing at 120 ℃ for 1 h. Five secondary metabolites were isolated from the CE and identified as averufanin, ergosterol peroxide, versicolorin B, averythrin and sterigmatocystin. Activity evaluation showed versicolorin B exhibited inhibitory effects on the mycelial growth and conidial germination of C. musae, and sterigmatocystin had a weak inhibitory effect on the mycelial growth of C. musae.

카네이션의 시설재배에서 길항성 세균을 이용한 Fusarium Wilt 의 생물학적 방제 (Biological Control of Fusarium Wilt of Carnation Plants by Antagonistic Microorganism in Greenhouse)

  • 조정일;조자용
    • 한국유기농업학회지
    • /
    • 제12권2호
    • /
    • pp.183-196
    • /
    • 2004
  • This study was carried out to screen and select the effects of antifungal bacterial strains which inhibit the growth of plant pathogen, Fusarium oxysporum(fusarium wilt) occurred in carnation plants in greenhouse. We isolated an effective bacterial strains and investigated into the antifungal activity of the antagonistic microorganism and it's identification. Twenty bacterial strains which strongly inhibited Fusarium oxysporum were isolated from roots of carnation plants and the soil in greenhouse, and the best antifungal bacteria designated as C121, was finally selected. Antagonistic bacterial strain, C121 was identified to be the genus Bacillus sp. based on the morphological, biochemical and cultural characterizations. The Bacillus sp. C121 showed 58.1% of antifungal activity against the growth of Fusarium oxysporum. By the bacterialization of the cultural broth and the heat bacterialization culture filtrate of it, Bacillus sp. C121 was shown 92.1% and 21.0% of antifungal activity, respectively.

  • PDF

Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India

  • Naglot, A.;Goswami, S.;Rahman, I.;Shrimali, D.D.;Yadav, Kamlesh K.;Gupta, Vikas K.;Rabha, Aprana Jyoti;Gogoi, H.K.;Veer, Vijay
    • The Plant Pathology Journal
    • /
    • 제31권3호
    • /
    • pp.278-289
    • /
    • 2015
  • Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, ${\beta}$-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity.

Antifungal activity of Saccharomyces cerevisiae peroxisomal 3-ketoacyl-CoA thiolase

  • Lee, Jung-Ro;Kim, Sun-Young;Chae, Ho-Byoung;Jung, Ji-Hyun;Lee, Sang-Yeol
    • BMB Reports
    • /
    • 제42권5호
    • /
    • pp.281-285
    • /
    • 2009
  • Peroxisomes play an important role in cellular defense systems and generate secondary messengers for cellular communication. Saccharomyces cerevisiae containing oleate-induced peroxisomes were subjected to buffer-soluble extraction and two chromatographic procedures, and a protein with antifungal activity was isolated. The results of MALDI-TOF analysis identified the isolated protein as peroxisomal 3-ketoacyl-CoA thiolase (ScFox3). Purified yeast ScFox3 exhibited thiolase activity that catalyzed the thiolytic cleavage of 3-ketoacyl-CoA to acetyl-CoA and acyl-CoA. ScFox3 protein inhibited various pathogenic fungal strains, with the exception of Aspergillus flavus. Using ScFox3-GFP and PTS2 signal-truncated ScFox3M-GFP, we showed that only ScFox3-GFP, with an intact PTS2 peroxisome signal sequence, was able to translocate into peroxisomes. Yeast ScFox3 is a natural antifungal agent found in peroxisomes.

Cladosporium cladosporioides 포자에 대한 나노입자의 항진균 특성 평가 (Evaluation of Antifungal Activities of Nanoparticles against Cladosporium cladosporioides Spore Bioaerosols)

  • 윤선화;배귀남;이병욱;지준호;김선정
    • 한국대기환경학회지
    • /
    • 제25권4호
    • /
    • pp.255-263
    • /
    • 2009
  • The antifungal activity of silver, copper, and titania nanoparticles against fungal spores was investigated. Cladosporium cladosporioides spores were aerosolized and sampled on a solid agar plate using an Anderson impactor. The solid agar plate contained different concentration of nanoparticles ranging from 0 to $500{\mu}g/mL$. Silver and copper nanoparticles were shown to be an effective antifungal agent, while titania nanoparticles were not. Antifungal activity of these effective nanoparticles appeared at $300{\mu}g/mL$ concentration.

복숭아 미이라과로부터 분리한 방선균의 항균 활성 및 동정 (Antifumgal Activity and Identification of an Actinomycetes Strain Isolated from Mummified Peaches)

  • 임태헌;이정목;장태현;차병진
    • 한국미생물·생명공학회지
    • /
    • 제28권3호
    • /
    • pp.161-166
    • /
    • 2000
  • Monilinia fructicola에 의해 감염되어 미이라화된 복숭아 열매로부터 Monilinia fructicola에 강한 항진균성 물질 chitinase 및 urease을 분비하는 방선균을 분리하였다 선발된 TH-04 균주는 배양적 .형태적 특성 세포벽 성분 및 세포내 당 성분을 분석한 결과 전형적인 Streptomyces속에 속하는 방선균으로 동정되었다. TH-04 균주는 Monilinia fructicola Colletotrichum gloeosporioides Magnaporthe grisea Rhizoctonia solani, Phytophthora capsici, Alternaria kikuchi-ana, Fusarium solani 및 Fusarium oxysporum 등 8종의 식물병원균에 대하여 항진균 활성을 나타냈다. 항생물질 생산을 위한 배양조건은 온도 $20^{\circ}C$, pH 7 및 배양기간 7일로 확인되었다.

  • PDF

항진균제로서 무화과 활성물질을 이용한 Ketoconazole 유도체 합성 (The Synthesis of Ketoconazole Derivatives Using Biological Activity Compounds in Figue as an Antifungal Agents)

  • 류성렬
    • 한국응용과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.299-306
    • /
    • 1999
  • For the synthesis of new antifungal agents, We have synthesized four new ketoconazole derivatives were synthesized by the reaction of cis-[2-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)-1,3-dioxolan-4-yl]methane sulfonate with isolated fig compounds. These compounds were showed strong antifungal activity against C, albicans ATCC 10231. C, utilis. S, cerevisiae ATCC 9763. A and niger ATCC 9029. Among them, sample No.(13) showed potent inhibition activity. Generally, other samples showed biological activity in vitro test. The above results showed the possibility of the development of new antifungal agents.

Synthesis and Antifungal Evaluation of 6-(N-arylamino)-7-methylthio-5,8-quinolinediones

  • Kim, Chung-Kyu;Choi, Jung-Ah;Kim, Sung-Hee
    • Archives of Pharmacal Research
    • /
    • 제21권4호
    • /
    • pp.440-444
    • /
    • 1998
  • A series of 6-(N-arylamino)-7-methylthio-5,8-quinolinedione derivatives 4a-4l was newly synthesized for the evaluation of antifungal activity. 6-(N-Arylamino)-7-methylthio-5,8-quinolinediones were prepared by regioselective nucleophilic substitution of 6,7-dichloro-5,8-quinolinediones with arylamines in the presence of $Ce^{3+}$, and $Na_2$S/dimethylsulfate. The MIC values of 4a-4l were determined for antifungal susceptibility in vitro against Candida species by agar streak method. The derivatives 4a-4l had generally potent antifungal activities against all human pathogenic fungi. Especially they had the most potent activity against C. krusei at 12.5-0.8 $\mu\textrm{g}$/ml. Compounds 4d, 4g, 4h, 4j and 4k had more potent antifungal activities than fluconazole. Compounds 4g and 4h completely inhibited the fungal growth at 0.8-6.3 $\mu\textrm{g}$/ml against all Candida species, while fluconazole inhibited the growth at 25 $\mu\textrm{g}$/ml. The compounds such as 4g and 4h containing an N-(4-bromo-2-methylphenyl)- or N-(4-bromo-3methylphenyl)amino substituent exhibited the most potent antifungal activities.

  • PDF

Nonanoic Acid, an Antifungal Compound from Hibiscus syriacus Ggoma

  • Jang, Yun-Woo;Jung, Jin-Young;Lee, In-Kyoung;Kang, Si-Yong;Yun, Bong-Sik
    • Mycobiology
    • /
    • 제40권2호
    • /
    • pp.145-146
    • /
    • 2012
  • The root of Hibiscus syriacus (Malvaceae) has been used for treatment of fungal diseases such as tinea pedis (athlete's foot). In this study, we investigated the antifungal constituent of the root of Hibiscus syriacus Ggoma, which was produced by a mutation breeding using gamma ray irradiation, and compared the antifungal activity of H. syriacus Ggoma and its parent type. According to the results, the methanolic extract of H. syriacus Ggoma exhibited four times higher antifungal activity than its parent type against Trichophyton mentagrophytes. Following purification through various column chromatographies, the antifungal substance was identified as nonanoic acid on the basis of spectroscopic analysis.

황련에서 분리된 단백질성분의 항진균효과 (Anticandidal Activity of the Protein Substance from Coptidis Rhizoma)

  • 김현경;이주희;심진기;한용문
    • 약학회지
    • /
    • 제49권4호
    • /
    • pp.323-329
    • /
    • 2005
  • Antimicrobial peptides are evolutionary ancient weapons for animal and plant species to depend themselves against infectious microbes. In the present study, we investigated if an antimicrobial peptide was produced from Coptidis Rhizoma. For the determination, protein substance from the medicinal plant was isolated by various preparations. Among the preparations, the protein portion dissolved in phosphate-buffered saline solution (CRP-DS) that contained the most amount of protein $(90\%)$ resulted in maximal inhibition of Candida albicans which causes local and systemic infections. Analyses by gel-electrophoresis and gel-permeation chromatography showed the CRP-DS formed a single band of approximately 11.8 KDa as molecular size. Antifungal activity of the CRP-DS was almost equivalent to antifungal activity by fluconazole, resulting in MIC (minimal inhibitory concentration) of approximately $50{\mu}g/ml$. The antifungal activity was a dose-dependent. The antifungal activity appeared to be inactivated by heat-treatment and ionic strength, respectively. In a murine model, the CRP-DS enhanced resistance of mice against disseminated candidiasis. The HPLC analysis demonstrated maximum $4\%$ of berberine as residual content in the CRP-DS preparation resulted in no influence on the antifungal activity. In addition, protein portion isolated from Phellodendri Cortex producing the alkaloid component like Coptidis Rhizoma had no such anticandidal effect. These results indicate that the protein substance from Coptidis Rhizoma was responsible for the antifungal activity.