• Title/Summary/Keyword: An alkaline single cell gel electrophoresis (SCGE) Comet assay

Search Result 6, Processing Time 0.019 seconds

Evaluation of Protective Effects of Houttuynia cordata on H2O2-Induced Oxidative DNA Damage Using an Alkaline Comet Assay in Human HepG2 Cells

  • Hah, Dae-Sik;Kim, Chung-Hui;Ryu, Jae-Doo;Kim, Eui-Kyung;Kim, Jong-Shu
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.25-31
    • /
    • 2007
  • To evaluate the protective effect of Houttuynia cordata on hydrogen peroxide-induced oxidative DNA damage in HepG2 cell line, we used an alkaline single-cell gel electrophoresis (SCGE; comet assay). The DNA damage was analyzed by tail moment (TM) and tail length (TL), which used markers of DNA strand breaks in SCGE. The $100{\mu}g/ml$ of methanolic extract of Houttuynia cordata root showed significant protective effects (p < 0.01) against hydrogen peroxide-induced DNA damage in HepG2 cells and increased cell viability against hydrogen peroxide. The results of this study indicate that Houttuynia cordata root methanol extract acts as a potential antioxidant, and exhibits potential anticancer properties, which may provide a clue to find applications in new pharmaceuticals for oxidative stability.

Evaluation of protective effect of peach kernel extracts on radiation-induced DNA damage in human blood lymphocytes in the single cell gel electrophoresis assay (단세포 겔 전기영동법을 이용한 사람 림프구 DNA 손상에 대한 복숭아씨 추출물의 방사선 방어효과 평가)

  • Kim, Jin-Kyu;Park, Tae-Won;Lee, Chang-Joo;Chai, Young-Gyu
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.93-99
    • /
    • 1999
  • The alkaline single-cell gel electrophoresis (SCGE) assay, called the comet assay, has been applied to the detection of DNA damage from a number of chemical and biological factors in vivo and in vitro. The comet assay is a novel method to assess DNA single-strand breaks, alkali-labile sites in individual cells. The effect of peach kernel extracts on radiation-induced DNA damage in human blood lymphocytes was evaluated by the SCGE assay. The lymphocytes, with or without pretreatment of the extracts, were exposed to 0, 0.1, 0.3, 0.5, 1.0 and 2.0 Gy of $^{60}Co$ gamma ray. Significantly increased tail moment, which was a marker of DNA strand breaks in the comet assay, showed an excellent dose-response relationship. The treatment of the peach kernel extracts reduced the DNA damage by 30 % in irradiated groups as compared to that in non-treated control groups. The result indicates that the extracts shows radioprotective effect on lymphocyte DNA when assessed by the comet assay.

  • PDF

Assessment of DNA Damage using an Alkaline Single Cell Gel Electrophoresis (SCGE) Comet Assay and Toxic Effects in Chickens by T-2 Toxin Treatment (T-2 toxin을 투여한 닭에서 Comet assay 방법을 이용한 DNA 손상 평가와 독성)

  • Hah Dae-Sik;Heo Jung-Ho;Lee Kuk-Cheon;Cho Myung-Heui;Kim Kuk-Hun;Kim Chung-Hui;Lue Jae-Du;Lee Seung-Hwan;Kim Gon-Sup;Kim Eui-Gyung;Kim Jong-Shu
    • Toxicological Research
    • /
    • v.22 no.2
    • /
    • pp.75-85
    • /
    • 2006
  • This study was designed to evaluate the possible DNA damaging effects of T-2 toxin using an alkaline single cell gel electrophoresis (SCGE) comet assay and also to investigate toxic effects in chickens. A total of 20 chickens were used in these experiments. Graded concentrations of dietary T-2 toxin (0, 4, 8, and $16{\mu}g/g$ of diet) were given to groups of 5 broiler chickens. In comet assay, The DNA damage was analysed by the tail extent moment (TEM) and tail length (TL), which were used as markers of DNA strand breaks in SCGE. A significant dose-dependent increase in the extent of DNA migration as well as in the percentage of cells with tails was observed after treatment with T-2 toxin (P<0.05). Treatment with the low T-2 toxin ($4{\mu}/g$ of diet) induced a relatively low level of DNA damage in comparison with the high T-2 toxin ($16{\mu}/g$ of diet) group. The growth rate was significantly reduced by concentrations of 8, and $16{\mu}/g$ of diet (P < 0.05). The feed conversion ratio were significantly affected by any concentrations (P < 0.05). The relative weight of the spleen, and lung was decreased by the growth inhibitory concentrations. The bursa of Fabricius, thymus, and kid- ney were decreased in relative weight by concentrations of $16{\mu}/g$ of diet. The relative weight of the liver and heart were unaffected. The hemoglobin (Hb), hematocrit (HCT), and mean corpuscular hemoglobin (MCH) were decreased at concentration of $16{\mu}/g$ of diet. As compared with control chickens, there was no marked change in serum components except uric acid in T-2 treated chickens. All lymphoid tissues retained atrophic and lymphoid cell depletion throughout the three weeks trial.

Evaluation of Oxidative DNA Damage Using an Alkaline Single Cell Gel Electrophoresis (SCGE) Comet Assay, and the Protective Effects of N-Acetylcysteine Amide on Zearalenone-induced Cytotoxicity in Chang Liver Cells

  • Kang, Changgeun;Lee, Hyungkyoung;Yoo, Yong-San;Hah, Do-Yun;Kim, Chung Hui;Kim, Euikyung;Kim, Jong Shu
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.43-52
    • /
    • 2013
  • Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium that are found in cereals and agricultural products. ZEN has been implicated in mycotoxicosis in farm animals and in humans. The toxic effects of ZEN are well known, but the ability of an alkaline Comet assay to assess ZEN-induced oxidative DNA damage in Chang liver cells has not been established. The first aim of this study was to evaluate the Comet assay for the determination of cytotoxicity and extent of DNA damage induced by ZEN toxin, and the second aim was to investigate the ability of N-acetylcysteine amide (NACA) to protect cells from ZEN-induced toxicity. In the Comet assay, DNA damage was assessed by quantifying the tail extent moment (TEM; arbitrary unit) and tail length (TL; arbitrary unit), which are used as indicators of DNA strand breaks in SCGE. The cytotoxic effects of ZEN in Chang liver cells were mediated by inhibition of cell proliferation and induction of oxidative DNA damage. Increasing the concentration of ZEN increased the extent of DNA damage. The extent of DNA migration, and percentage of cells with tails were significantly increased in a concentration-dependent manner following treatment with ZEN toxin (p < 0.05). Treatment with a low concentration of ZEN toxin (25 ${\mu}M$) induced a relatively low level of DNA damage, compared to treatment of cells with a high concentration of ZEN toxin (250 ${\mu}M$). Oxidative DNA damage appeared to be a key determinant of ZEN-induced toxicity in Chang liver cells. Significant reductions in cytolethality and oxidative DNA damage were observed when cells were pretreated with NACA prior to exposure to any concentration of ZEN. Our data suggest that ZEN induces DNA damage in Chang liver cells, and that the antioxidant activity of NACA may contribute to the reduction of ZEN-induced DNA damage and cytotoxicity via elimination of oxidative stress.

Protective Effects of a Herb, Artemisia capillaris, Against Radiation-induced DNA Damage (방사선 유도 DNA 손상에 대한 인진쑥의 방어효과)

  • Jo, Sung-Kee;Oh, Heon;Cheon, Eui-Hyun;Jeong, U-Hee;Cho, Nam-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • In the present study, the protective effects of Artemisia capillaris (AC) on the DNA damage induced by $^{60}$ Co ${\gamma}$-rays were evaluated using alkaline single-cell gel electrophoresis (SCGE, comet assay) in the mouse peripheral lymphocytes and micronuclei (MN) formation test in the Chinese hamster ovary (CHO) cells. We also investigated the effect of AC on 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in the mouse liver and thymus exposed to ${\gamma}$-ray, The tail moment and the frequency of MN, which were markers of DNA damage in the SCGE and MN formation test, were decreased in the groups treated with AC extract before exposure to 200 cGy of ${\gamma}$-ray. We also observed its activities, lowering 8-OHdG level, an index of oxidative DNA damage, in the groups treated with AC extract before whole body ${\gamma}$-irradiation (800 cGy). It is plausible that scavenging of free radicals by AC may have played an important role in providing the protection against the radiation-induced damage to the DNA. These results indicated that AC protects the DNA damage induced by ${\gamma}$-rays and might be a useful radioprotector, especially since it is a relatively nontoxic product.

Protective Effects of a Herb, Menthae Herba, against Radiation-induced Oxidative DNA Damage

  • Jo, Sung-Kee;H, Heon-O;Uhee Jung;Kim, Sung-Ho;Byun, Myung-Woo
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.152-152
    • /
    • 2003
  • As utilization of radiation in medicine, industry and biochemical research increases, the protection against radiation damage has become an important issue. Natural products such as herbal medicines are beginning to receive attention as modifiers on the radiation response. In the present study, the protective effect of a herb, Menthae Herba, against radiation-induced DNA damage was evaluated using alkaline single-cell gel electrophoresis (SCGE; comet assay) in the mouse peripheral blood Iymphocytes and the micronucleus formation test in the Chinese hamster ovary (CHO) cells. The tail moment, which was a marker of DNA damage in the SCGE, and the frequency of micronuclei was decreased in groups treated with Mentae Herba extract before exposure to 200 cGy of gamma-ray. We also confirmed its activities to scavenge DPPH and hydroxyl radicals. These experiments demonstrated that Menthae Herba was effective at reducing the radiation-induced damage of DNA and scavenging free radicals. It is plausible that scavenging of free radicals by Menthae Herba may have played an important role in providing the protection against the radiation-induced damage to the DNA. These results indicated that Menthae Herba might be a useful radioprotector and that radical scavenging appears to be one of the mechanisms of radiation protection.

  • PDF