• Title/Summary/Keyword: An Automatic Turn Signal System

Search Result 6, Processing Time 0.024 seconds

Verification of an automatic turn signal system for a bicyclist safety using Proteus VSM simulation (프로테우스 VSM을 이용한 자전거 운전자 안전을 위한 자동 방향 표시 시스템 검증)

  • Yoo, Jae-Duck;Kang, Hee-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.637-644
    • /
    • 2015
  • Bicycles share the road where high speed cars run and driving license is essential to bicyclist. After sunset, accidents can be occurred due to changing one line to another line in a road inadequately and bicycle driving route changing without an alarm. In this paper, we apply the same system as an automatic signal lights system to prevent the accidents for bicyclist safety. Then, we verify it using proteus VSM simulation.

Detection of Stator Winding Inter-Turn Short Circuit Faults in Permanent Magnet Synchronous Motors and Automatic Classification of Fault Severity via a Pattern Recognition System

  • CIRA, Ferhat;ARKAN, Muslum;GUMUS, Bilal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.416-424
    • /
    • 2016
  • In this study, automatic detection of stator winding inter-turn short circuit fault (SWISCFs) in surface-mounted permanent magnet synchronous motors (SPMSMs) and automatic classification of fault severity via a pattern recognition system (PRS) are presented. In the case of a stator short circuit fault, performance losses become an important issue for SPMSMs. To detect stator winding short circuit faults automatically and to estimate the severity of the fault, an artificial neural network (ANN)-based PRS was used. It was found that the amplitude of the third harmonic of the current was the most distinctive characteristic for detecting the short circuit fault ratio of the SPMSM. To validate the proposed method, both simulation results and experimental results are presented.

Combining Object Detection and Hand Gesture Recognition for Automatic Lighting System Control

  • Pham, Giao N.;Nguyen, Phong H.;Kwon, Ki-Ryong
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.329-332
    • /
    • 2019
  • Recently, smart lighting systems are the combination between sensors and lights. These systems turn on/off and adjust the brightness of lights based on the motion of object and the brightness of environment. These systems are often applied in places such as buildings, rooms, garages and parking lot. However, these lighting systems are controlled by lighting sensors, motion sensors based on illumination environment and motion detection. In this paper, we propose an automatic lighting control system using one single camera for buildings, rooms and garages. The proposed system is one integration the results of digital image processing as motion detection, hand gesture detection to control and dim the lighting system. The experimental results showed that the proposed system work very well and could consider to apply for automatic lighting spaces.

Integrated Roll-Pitch-Yaw Autopilot via Equivalent Based Sliding Mode Control for Uncertain Nonlinear Time-Varying Missile

  • AWAD, Ahmed;WANG, Haoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.688-696
    • /
    • 2017
  • This paper presents an integrated roll-pitch-yaw autopilot using an equivalent based sliding mode control for skid-to-turn nonlinear time-varying missile system with lumped disturbances in its six-equations of motion. The considered missile model are developed to integrate the model uncertainties, external disturbances, and parameters perturbation as lumped disturbances. Moreover, it considers the coupling effect between channels, the variation of missile velocity and parameters, and the aerodynamics nonlinearity. The presented approach is employed to achieve a good tracking performance with robustness in all missile channels simultaneously during the entire flight envelope without demand of accurate modeling or output derivative to avoid the noise existence in the real missile system. The proposed autopilot consisting of a two-loop structure, controls pitch and yaw accelerations, and stabilizes the roll angle simultaneously. The Closed loop stability is studied. Numerical simulation is provided to evaluate performance of the suggested autopilot and to compare it with an existing autopilot in the literature concerning the robustness against the lumped disturbances, and the aforesaid considerations. Finally, the proposed autopilot is integrated in a six degree of freedom flight simulation model to evaluate it with several target scenarios, and the results are shown.

Energy Saving System Based on the Human Sensing Technique (인체감지를 통한 에너지절약 시스템 개발)

  • Lee, Jong-Pil;Ji, Pyeong-Shik;Shin, Kwan-Woo;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.205-209
    • /
    • 2004
  • This research is investigated an energy saving system based on human detecting technique. It saves a lot of energy by automatic switching method of lighting, appliance, and so on. Existence of people on space is detected by infrared ray sensor. If there is not anybody during definite time, then main controller of system sends "power off" signal to lighting switches, and outlets. When people are detected again, turn on lighting switches and outlets. Result of this research is adaptable for classrooms and offices, and great effect of energy saving is expected.

A Study on Development of Off-Line Path Programming for Footwear Buffing Robot

  • Lho, Tae-Jung;Kang, Dong-Joon;Che, Woo-Seung;Kim, Jung-Young;Kim, Min-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1469-1473
    • /
    • 2004
  • We suggest how to program off-line robot path along shoes' outsole shape in the footwear buffing process by a 5-axis microscribe system like robot arms. This microscribe system developed consists a 5-axis robot link with a turn table, signal processing circuit, PC and an application software program. It makes a robot path on the shoe's upper through the movement of a microscribe with many joints. To do this, first it reads 5-encoder's pulse values while a robot arm points a shoes' outsole shape from the initial status. This system developed calculates the encoder pulse values for the robot arm's rotation and transmits the angle pulse values to the PC through a circuit. Then, Denavit-Hartenberg's(D-H) direct kinematics is used to make the global coordinate from robot joint one. The determinant is obtained with kinematics equation and D-H variable representation. To drive the kinematics equation, we have to set up the standard coordinates first. The many links and the more complicated structure cause the difficult kinematics problem to solve in the geometrical way. Thus, we can solve the robot's kinematics problems efficiently and systematically by Denavit-Hartenberg's representation. Finally, with the coordinate values calculated above, it can draw a buffing gauge-line on the upper. Also, it can program off-line robot path on the shoes' upper. We are subjected to obtaining shoes' outline points, which are 2 outlines coupled with the points and the normal vector based on the points. These data is supposed to be transformed into .dxf file to be used for data of automatic buffing robot. This system developed is simulated by using spline curves coupled with each point from dxf file in Autocad. As a result of applying this system to the buffing robot in the flexible footwear manufacturing system, it can be used effectively to program the path of a real buffing robot.

  • PDF