• Title/Summary/Keyword: Amyloid protein

검색결과 284건 처리시간 0.042초

Comparative Study on the Structural and Thermodynamic Features of Amyloid-Beta Protein 40 and 42

  • Lim, Sulgi;Ham, Sihyun
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.237-249
    • /
    • 2014
  • Deposition of amyloid-${\beta}$ ($A{\beta}$) proteins is the conventional pathological hallmark of Alzheimer's disease (AD). The $A{\beta}$ protein formed from the amyloid precursor protein is predominated by the 40 residue protein ($A{\beta}40$) and by the 42 residue protein ($A{\beta}42$). While $A{\beta}40$ and $A{\beta}42$ differ in only two amino acid residues at the C-terminal end, $A{\beta}42$ is much more prone to aggregate and exhibits more neurotoxicity than $A{\beta}40$. Here, we investigate the molecular origin of the difference in the aggregation propensity of these two proteins by performing fully atomistic, explicit-water molecular dynamics simulations. Then, it is followed by the solvation thermodynamic analysis based on the integral-equation theory of liquids. We find that $A{\beta}42$ displays higher tendency to adopt ${\beta}$-sheet conformations than $A{\beta}40$, which would consequently facilitate the conversion to the ${\beta}$-sheet rich fibril structure. Furthermore, the solvation thermodynamic analysis on the simulated protein conformations indicates that $A{\beta}42$ is more hydrophobic than $A{\beta}40$, implying that the surrounding water imparts a larger thermodynamic driving force for the self-assembly of $A{\beta}42$. Taken together, our results provide structural and thermodynamic grounds on why $A{\beta}42$ is more aggregation-prone than $A{\beta}40$ in aqueous environments.

  • PDF

Proteins as the molecular markers of male fertility

  • Beeram, Eswari
    • 식품보건융합연구
    • /
    • 제4권4호
    • /
    • pp.18-25
    • /
    • 2018
  • Proteins play a key role in many functions such as metabolic activity, differentiation, as cargos and cell fate regulators. It is necessary to know about the markers involved in male fertility in order to develop remedies for the treatment of male infertility. But, the role of the proteins is not limited to particular function in the biological systems. Some of the proteins act as ion channels such as catsper and proteins like Nanos acts as a translational repressor in germ cells and expressed in prenatal period whose role in male fertility is uncertain. Rbm5 is a pre mRNA splicing factor necessary for sperm differentiation whose loss of function results deficit in sperm production. DEFB114 is a beta defensin family protein necessary for sperm motility in LPS challenged mice where as TEX 101 is a plasma membrane specific germ cell protein whose function is not clearly known u to now. Gpr56 is another adhesion protein whose null mutation leads to arrest of production of pups in rats. Amyloid precursor protein role in Alzheimer's disease is already known but it plays an important role in male fertility also but its function is uncertain and has to be considered while targeting APP during the treatment of Alzheimer's disease. The study on amyloid precursor protein in male fertility is a novel thing but requires further study in correlation to alzheimer's disease.

Effect of Mycelial Extract of Clavicorona pyxidata on the Production of Amyloid $\beta$-Peptide and the Inhibition of Endogenous $\beta$-Secretase Activity in vitro

  • Lee, Tae-Hee;Park, Young-Il;Han, Yeong-Hwan
    • Journal of Microbiology
    • /
    • 제44권6호
    • /
    • pp.665-670
    • /
    • 2006
  • Amyloid $\beta$-peptide (A$\beta$), which is a product of the proteolytic effect of $\beta$-secretase (BACE) on an amyloid precursor protein, is closely associated with Alzheimer's disease (AD) pathogenesis. There is sufficient evidence to suggest that a BACE inhibitor may reduce A$\beta$ levels, thus decreasing the risk of AD. In a previous study, an extract of Clavicorona pyxidata DGUM 29005 mycelia was found to inhibit the production of a soluble $\beta$-amyloid precursor protein (s$\beta$APP), A$\beta$, and BACE in neuronal cell lines. We sought to determine whether this mycelial extract exerts the same effect in human rhabdomyosarcoma A-204 and rat pheochromocytoma PC-12 cells. We found that the production of A$\beta$ decreased in a dose-dependent manner in the presence of the mycelial extract and that the concentration of A$\beta$ never exceeded $50{\mu}g/ml$. The presence of sAPP was detected in every culture medium to which the mycelial extract had been added and its concentration remained the same, regardless of the concentration of the extract used. Endogenous $\beta$-secretase activity in A-204 and PC-12 cellular homogenates also decreased in the presence of this extract. These cells, in culture, were not susceptible to the cytotoxic activity of the mycelial extract.

Zinc Inhibits Amyloid ${\beta}$ Production from Alzheimer's Amyloid Precursor Protein in SH-SY5Y Cells

  • Lee, Jin-U;Kim, Chul-Hoon;Kim, Dong-Goo;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.195-200
    • /
    • 2009
  • Zinc released from excited glutamatergic neurons accelerates amyloid ${\beta}$ (A ${\beta}$) aggregation, underscoring the therapeutic potential of zinc chelation for the treatment of Alzheimer's disease (AD). Zinc can also alter A ${\beta}$ concentration by affecting its degradation. In order to elucidate the possible role of zinc influx in secretase-processed A ${\beta}$ production, SH-SY5Y cells stably expressing amyloid precursor protein (APP) were treated with pyrrolidine dithiocarbamate (PDTC), a zinc ionophore, and the resultant changes in APP processing were examined. PDTC decreased A ${\beta}$ 40 and A ${\beta}$ 42 concentrations in culture media bathing APP-expressing SH-SY5Y cells. Measuring the levels of a series of C-terminal APP fragments generated by enzymatic cutting at different APP-cleavage sites showed that both ${\beta}$-and ${\alpha}$-cleavage of APP were inhibited by zinc influx. PDTC also interfered with the maturation of APP. PDTC, however, paradoxically increased the intracellular levels of A ${\beta}$ 40. These results indicate that inhibition of secretase-mediated APP cleavage accounts -at least in part- for zinc inhibition of A ${\beta}$ secretion.

A novel BACE inhibitor isolated from Eisenia bicyclis exhibits neuroprotective activity against β-amyloid toxicity

  • Lee, Jung Kwon;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • 제21권12호
    • /
    • pp.38.1-38.9
    • /
    • 2018
  • Alzheimer's disease (AD) is a disturbing and advanced neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta ($A{\beta}$) and the hyperphosphorylation of tau proteins in the brain. The deposition of $A{\beta}$ aggregates triggers synaptic dysfunction, and neurodegeneration, which lead to cognitive disorders. Here, we found that FF isolated from an eatable perennial brown seaweed E.bicyclis protect against $A{\beta}$-induced neurotoxicity in neuroblastoma cells stably transfected with two amyloid precursor protein (APP) constructs: the APP695 cDNA (SH-SY5Y-APP695swe). The FF demonstrated strong inhibitory activity for ${\beta}$-secretase ($IC_{50}$ $16.1{\mu}M$) and its inhibition pattern was investigated using Lineweaver-Burk and Dixon plots, and found to be non-competitive. Then, we tested whether FF could inhibit production of $A{\beta}$ in SH-SY5Y-APP695swe. FF inhibited the production of $A{\beta}$ and soluble-APP, residue of APP from cleaved APP by ${\beta}$-secretase. Our data show that FF can inhibit the production of $A{\beta}$ and soluble-$APP{\beta}$ via inhibition of ${\beta}$-secretase activity. Taken together these results suggest that FF may be worthy of future study as an anti-AD treatment.

Nanomechanical behaviors and properties of amyloid fibrils

  • Choi, Bumjoon;Lee, Sang Woo;Eom, Kilho
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권1호
    • /
    • pp.53-64
    • /
    • 2016
  • Amyloid fibrils have recently been considered as an interesting material, since they exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is larger than that of other protein materials. Despite recent findings of these excellent mechanical properties for amyloid fibrils, it has not been fully understood how these excellent mechanical properties are achieved. In this work, we have studied the nanomechanical deformation behaviors and properties of amyloid fibrils such as their elastic modulus as well as fracture strength, by using atomistic simulations, particularly steered molecular dynamics simulations. Our simulation results suggest the important role of the length of amyloid fibrils in their mechanical properties such that the fracture force of amyloid fibril is increased when the fibril length decreases. This length scale effect is attributed to the rupture mechanisms of hydrogen bonds that sustain the fibril structure. Moreover, we have investigated the effect of boundary condition on the nanomechanical deformation mechanisms of amyloid fibrils. It is found that the fracture force is critically affected by boundary condition. Our study highlights the crucial role of both fibril length and boundary condition in the nanomechanical properties of amyloid fibrils.

Protein Folding and Diseases

  • Lee, Cheol-Ju;Yu, Myeong-Hee
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.275-280
    • /
    • 2005
  • For most of proteins to be active, they need well-defined three-dimensional structures alone or in complex. Folding is a process through which newly synthesized proteins get to the native state. Protein folding inside cells is assisted by various chaperones and folding factors, and misfolded proteins are eliminated by the ubiquitin-proteasome degradation system to ensure high fidelity of protein expression. Under certain circumstances, misfolded proteins escape the degradation process, yielding to deposit of protein aggregates such as loop-sheet polymer and amyloid fibril. Diseases characterized by insoluble deposits of proteins have been recognized for long time and are grouped as conformational diseases. Study of protein folding mechanism is required for better understanding of the molecular pathway of such conformational diseases.

캠벨얼리(Vitis labruscana B.) 잎 에탄올 추출물이 신경세포에서 아밀로이드 전구 단백질의 발현과 아세틸콜린에스테라제 활성에 미치는 영향 (The Effect of Vitis labruscana B. Leaves Ethanol Extract on the Expression of Amyloid Precursor Protein in Neuroblastoma Cells and on the Acetylcholinesterase Activity)

  • 최하연;김주은;마상용;조형권;김대성;임재윤
    • 생약학회지
    • /
    • 제53권2호
    • /
    • pp.102-110
    • /
    • 2022
  • Alzheimer's disease (AD) is the most common form of dementia, and the accumulation of β-amyloid (Aβ) in the brain triggers AD, followed by hyperphosphorylation of tau protein, neurofibrillary tangles, and synapses loss, neuronal cell death, and cognitive decline occur in a chain. In APPswe neuronal cell line, 50 ㎍/ml of Campbell early (Vitis labruscana B.) leaves 50% ethanol extract (VLL) treatment inhibited the secretion of Aβ1-42 by about 63% and the secretion of Aβ1-40 by about 50%. VLL did not target the enzymatic activity of the amyloidogenic pathway and decreased the protein expression of APP. As a result of RT-qPCR (Reverse transcription-quantitative real-time PCR) of the APPswe cell line treated with VLL, it is thought that the protein expression of APP was reduced by inhibiting the transcription process of the APP gene. In addition, VLL inhibited acetylcholinesterase (AChE) enzyme activity in vitro by 27.6% and 54.7%, respectively, at 50 and 100 ㎍/ml concentrations. We found that VLL inhibited the production of Aβ, a dementia-inducing substance, by suppressing the transcription of the APP gene, and that VLL inhibited AChE activity. We suggest that VLL has the potential as a natural drug material that modulates the alleviation of dementia symptoms.