• Title/Summary/Keyword: Amplitude Projection

Search Result 24, Processing Time 0.026 seconds

Implementation of Nonlinear SVM for HD Projection TV (HD Projection TV를 위한 비선형 SVM 회로의 구현)

  • Lee, Gwang-Sun;Gwon, Yong-Dae;Lee, Geon-Il;Song, Gyu-Ik;Choe, Deok-Gyu;Han, Chan-Ho;Kim, Eun-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.191-198
    • /
    • 2001
  • As a method to compensate the deterioration of the picture quality which was caused by beam profile characteristic in the CRT and the projection screen of HD projection TV, a linear scan velocity modulation(SVM) method has been employed, whose modulation velocity is linearly proportional to the variation in the video signal amplitude. However, the effect of picture quality improvement is not uniform with video signal amplitude in the linear SVM. In this paper, for the optimum SVM effect, we analyze the beam profile characteristic on the HD projection screen and we analyze the SVM effect as function of the differentiated pulse width, the differentiated pulse amplitude and the input signal amplitude. Finally we confirm that the nonlinear SVM method is necessary to get uniform image compensation in the HD projection TV, and we implement the nonlinear SVM circuit. The performance of the realized SVM circuit with nonlinear amplitude transfer characteristic is confirmed as uniform improvements in picture quality.

  • PDF

Study on the Characteristics and Separating Performance of Oscillating Sieve for Optimization of Separating Losses of Combine (콤바인 선별손실(選別損失) 적정화(適正化)를 위(爲)한 요동(揺動)체의 특성(特性)과 선별성능(選別性能)에 관한 연구(硏究))

  • Kim, Sang Hun;Nam, Sang Il;Ryu, Su Nam
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.48-57
    • /
    • 1984
  • To analyze the grain transport velocity, which is valuable for optimizing the separation losses, an oscillating appratus for sieve was designed. The grain transport velocity was measured in each combination of three amplitude levels, three rpm levels and four projection angle levels. To analyze the grain transport velocity theortically, two computer programs were developed. And the results from experiment and theoretical analysis were compared. 1. The grain transport velocity was increased with the projection angle of oscillating sieve. Especially when the projection angle is higher than $45^{\circ}$ the grain transport velocity on the flat-plate was not increased but on the racked surface was increased persistently. 2. The grain transport velocity was increased linearly with the frequency of oscillating motion. The speed of driving link must be higher than 350 rpm at 24mm amplitude, 250 rpm at 36 mm amplitude to transport the grain efficiently. 3. The grain transport velocity was increased with the amplitude of oscillating motion. But if the amplitude was smaller than interval of racks, the grain on the racked surface was not transported, even though the projection angle or the speed of revolutionary link was increased. 4. The transport characteristics of a grain varied with the amplitude and projection angle. Especially in the range of 1.5 < K < 2.3 at $45^{\circ}$ projection angle the transportation of grain was successful and the grain motion consisted of sliding movement (forward, backward) and jumping movement, which is considered recommendable for separating process of a combine sieve. 5. The results from theoretical analysis were approximately in accord with that from experiment.

  • PDF

Time-Delay and Amplitude Modified BP Imaging Algorithm of Multiple Targets for UWB Through-the-Wall Radar Imaging

  • Zhang, Huamei;Li, Dongdong;Zhao, Jinlong;Wang, Haitao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.677-688
    • /
    • 2017
  • In order to solve the undetected probability of multiple targets in ultra-wideband (UWB) through-the-wall radar imaging (TWRI), a time-delay and amplitude modified back projection (BP) algorithm is proposed. The refraction point is found by Fermat's principle in the presence of a wall, and the time-delay is correctly compensated. On this basis, transmission loss of the electromagnetic wave, the absorption loss of the refraction wave, and the diffusion loss of the spherical wave are analyzed in detail. Amplitude compensation is deduced and tested on a model with a single-layer wall. The simulating results by finite difference time domain (FDTD) show that it is effective in increasing the scattering intensity of the targets behind the wall. Compensation for the diffusion loss in the spherical wave also plays a main role. Additionally, the two-layer wall model is simulated. Then, the calculating time and the imaging quality are compared between a single-layer wall model and a two-layer wall model. The results illustrate the performance of the time-delay and amplitude-modified BP algorithm with multiple targets and multiple-layer walls of UWB TWRI.

A Study on Audience Counting Method in Auditorium Based on Pattern Comparison (패턴비교를 이용한 공연장에서의 관객 수 카운팅 방법에 관한 연구)

  • Sim, Sang-Kyun;Park, Young-Kyung;Kim, Joong-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.14B no.1 s.111
    • /
    • pp.13-22
    • /
    • 2007
  • In this paper, we propose an audience counting method in an auditorium based on pattern comparison. The previous counting methods based on object detection can't exactly count the audience in real time because auditorium has coarse illumination condition and so many audiences. Therefore, in this paper, we count the audience in an auditorium with fixed seats by the method which the pattern from each reference seat is compared to the pattern from each input seat. Especially, to overcome limitations based on either illumination or noise, two pattern comparison methods are efficiently employed and combined. One is based on the amplitude projection, and the other is based on Walsh-Hadamard Kernel. Walsh-Hadamard Kernel has the characteristic which complements amplitude projection. Therefore, we ran achieve the accurate counting in the presence of coarse illumination and noise. The experimental results show that our method performs well on sequences of images acquired in an auditorium. We also verify a realistic possibility for other applications applying our method to the parking positioning system.

Phase calcuation error analysis of 3D shape measurement system using phase-shifted fringe projection method (위상이동 간섭무늬 투영을 이용한 3차원 형상측정 시스템의 위상계산오차 해석)

  • 류현미;김석성;홍석경;연규황
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.182-188
    • /
    • 2002
  • We have analyzed the phase-calculation-error of a three-dimensional shape measurement system using the projection of phase shifted fringe patterns. In this study, we have dealt various errors; an error caused by the variation of quantization levels, an error caused by the defocus of fringe pattern projected images, an error caused by phase-shifting errors, an error caused by the intensity variation of the background and modulation amplitude of fringe pattern projected images during the projection of multiple patterns, an error caused by the distortion of sinusoidal shape of a fringe pattern. The results will contribute to the design of a three-dimensional shape measurment system and give an important meaning to the calculation and the analysis of the accuracy of a system.

The shape measurement of 3D object by using the method of interference pattern projection. (간섭무늬 투영 방식의 3차원 형상 측정)

  • 이연태;강영준;박낙규;황용선;백성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.271-274
    • /
    • 2002
  • The 3-D measurement using interference pattern projection is very attractive because of its high measuring speed and high sensitivity. When a sinusoidal amplitude grating was projected on an object, the surface-height distribution of the object is translated into a phase distribution of the deformed grating image. The patters was generated by a interferometer, and a PZT was used to shift the fringes on the target surface. The phase-acquisition algorithms are so sufficiently simple that high-resolution phase maps using a CCD camera can be generated in a short time. A working system requires a interferometer, a PZT, and a detector array interfaced to a microcomputer. Results of measurements on the diffused test objects are described.

  • PDF

Development of FROG Hardware and Software System for the Measurement of Femto-Seconds Ultrashort Laser Pulses (지속시간 펨토초 수준의 빛펄스틀 재는 이차조화파발생 프로그(SHG FROG) 장치 개발)

  • 양병관;김진승
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.278-284
    • /
    • 2004
  • A Second Harmonic Generation Frequency Resolved Optical Gating(SHG FROG) system was developed. Its performance test shows that it is capable of accurately measuring the temporal evolution of the electric field, both amplitude and phase, of femtosecond light pulses. For the retrieval of the temporal evolution of light pulses from their spectrograms obtained by using the FROG system, Principal Components Generalized Projection(PCGP) algorithm is used and in addition we used additional constraints of second-harmonic spectrum, marginals in frequency and time-delay of the spectrogram. Such modification of the software brings about significant improvement in speed and stability of the pulse retrieval process.

Beam Shaping and Speckle Reduction in Laser Projection Display Systems Using a Vibrating Diffractive Optical Element

  • Liang, Chuanyang;Zhang, Wei;Wu, Zhihui;Rui, Dawei;Sui, Yongxin;Yang, Huaijiang
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • The laser has been regarded as the potential illumination source for the next generation of projectors. However, currently the major issues in applying the laser as an illumination source for projectors are beam shaping and laser speckle. We present a compact solution for both issues by using a vibrating diffractive optical element (DOE). The DOE is designed and fabricated, and it successfully transforms the circular Gaussian laser beam to a low speckle contrast uniform rectangular pattern. Under a vibration frequency of 150 Hz and amplitude of $200{\mu}m$, the speckle contrast value is reduced from 67.67% to 13.78%, and the ANSI uniformity is improved from 24.36% to 85.54%. The experimental results demonstrate the feasibility and potential of the proposed scheme, and the proposed method is a feasible approach to the miniaturization of laser projection display illumination systems.

Implementation of Spatial Light Modulator(SLM) using a Commercial LCD Beam Projector

  • Ko, Jung-Hwan;Lee, Jae-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, a new high resolution XGA-SLM is implemented through modification of a commercial TFT-LCD beam projector and its optical modulation characteristics as a spatial light modulator(SLM) is also analyzed. First, the optics module, projection lamp and fans are removed from a commercial beam projector and instead some electric circuits to compensate their removal are manufactured and then, by inserting them into the beam projector, a new XGA-SLM is finally implemented. Second, from some optical experimental results, this TFT-SLM is found to have a good optical linearity in amplitude and phase modulation characteristics as a function of the input gray levels. Especially, through implementation of a binary phase-type correlator such as BPEJTC by using the suggested TFT-LCD panel, the implemented SLM is proposed as a new relatively low-cost and high resolution SLM for optical information processing.