• Title/Summary/Keyword: Amplitude Calibration

Search Result 71, Processing Time 0.024 seconds

Robot localization and calibration using Ultrasonic and Ratio Frequency (초음파 및 무선 통신 파를 이용한 자기 위치와 비컨 위치 인식 시스템)

  • Yoon J.Y.;Jung K.S.;Shin D.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1040-1044
    • /
    • 2005
  • This paper presents a method for the robot localization and calibration using the ultrasonic and the radio frequency. The distance between the receiver and a beacon can be computed by using the difference between times of flight. The presented method uses the gradient of the maximum amplitude of the ultrasonic in order to measure the time of flight precisely. The measured three distances between the receiver and the beacon are used to compute the robot position by the direct inverse method and the iterated least square approximation method. This paper is defined the calibration as the problem to find the location of 3 beacons and 3 robots, and presents 3 methods for it and found the 2B2R method as the best among them.

  • PDF

Design of a piezovibrocone and calibration chamber

  • Samui, Pijush;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.177-190
    • /
    • 2010
  • This paper presents the details of indigenous development of the piezovibrocone and calibration chamber. The developed cone has a cylindrical friction sleeve of $150cm^2$ surface area, capped with a $60^{\circ}$ apex angle conical tip of $15cm^2$ cross sectional area. It has a hydraulic shaker, coupled to the cone penetrometer with a linear displacement unit. The hydraulic shaker can produce cyclic load in different types of wave forms (sine, Hover sine, triangular, rectangular and external wave) at a range of frequency 1-10 Hz with maximum amplitude of 10 cm. The piezovibrocone can be driven at the standard rate of 2 cm/sec using a loading unit of 10 ton capacity. The calibration chamber is of size $2m{\times}2m{\times}2m$. The sides of the chamber and the top as well as the bottom portions are rigid. It has a provision to apply confining pressure (to a maximum value of $4kg/cm^2$) through the flexible rubber membrane inlined with the side walls of the calibration chamber. The preliminary static as well as dynamic cone penetration tests have been done sand in the calibration chamber. From the experimental results, an attempt has been made to classify the soil based on friction ratio ($f_R$) and the cone tip resistance ($q_c$).

Average Internal Loop-back Antenna Calibration Method for Array Antenna Systems (배열안테나 시스템의 평균 내부순환 안테나 교정 방법)

  • Lee, Il-Shin;Kim, Hyun-Su;Lee, Hong-Won;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.139-146
    • /
    • 2009
  • This paper presents an average internal loop-back antenna calibration method for array antenna in TDD(Time Division Duplex) systems. The proposed method calibrates the amplitude and the phase of RF systems using into mal coupler and switches without aids of external calibration systems. The average calibration scheme of the proposed method also increases reliability of calibration performance. Computer simulation demonstrates that the proposed method corrects beamforming angles of DOA estimation algorithm and BER performance in transmit power allocation scheme.

A Low Power, Wide Tuning Range VCO with Two-Step Negative-Gm Calibration Loop (2단계 자동 트랜스컨덕턴스 조절 기능을 가진 저전력, 광대역 전압제어 발진기의 설계)

  • Kim, Sang-Woo;Park, Joon-Sung;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • This paper presents a low-power, wide tuning range VCO with automatic two-step negative-Gm calibration loop to compensate for the process, voltage and temperature variation. To cover the wide tuning range, digital automatic negative-Gm tuning loop and analog automatic amplitude calibration loop are used. Adaptive body biasing (ABB) technique is also adopted to minimize the power consumption by lowering the threshold voltage of transistors in the negative-Gm core. The power consumption is 2 mA to 6mA from a 1.2 V supply. The VCO tuning range is 2.65 GHz, from 2.35 GHz to 5 GHz. And the phase noise is -117 dBc/Hz at the 1 MHz offset when the center frequency is 3.2 GHz.

A 4×4 Multiport Amplifier System with Reconfigurable Switching Matrices and Error Calibration (재구성 스위칭 매트릭스와 에러 보정회로를 포함한 4×4 다중 포트 증폭 시스템)

  • Lee, Han Lim;Park, Dong-Hoon;Lee, Won-Seok;Khang, Seung-Tae;Lee, Moon-Que;Yu, Jong-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.637-645
    • /
    • 2014
  • This paper presents a new $4{\times}4$ multi-port amplifier(MPA) structure using reconfigurable switching matrices as input and output hybrid matrices(IHM, OHM), and phase/amplitude error calibration circuits. According to the mode selection of the switches, output power can be flexibly and effectively managed since the number of PA's to be used and the number of output port to distribute/combine amplified signals can be controlled. In addition, the proposed structure contains the phase and amplitude error calibration block that helps produce identical amplitudes and desired phase differences to the $4{\times}4$ OHM, resulting in optimizing the port-to-port isolation of the MPA system.

Gain and Phase Mismatch Calibration Technique in Image-Reject RF Receiver

  • Lee, Mi-Young;Yoo, Chang-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.25-27
    • /
    • 2010
  • This paper presents a gain and phase mismatch calibration technique for an image-reject RF receiver. The gain mismatch is calibrated by directly measuring the output signal amplitudes of two signal paths. The phase mismatch is calibrated by measuring the output amplitude of the final IF output at the image band. The calibration of the gain and phase mismatch is performed at power-up, and the normal operation of the RF receiver does not interfere with the mismatch calibration circuit. To verify the proposed technique, a 2.4-GHz Weaver image-reject receiver with the gain and phase mismatch calibration circuit is implemented in a 0.18-${\mu}m$ CMOS technology. The overall receiver achieves a voltage gain of 45 dB and a noise figure of 4.8 dB. The image rejection ratio(IRR) is improved from 31 dB to 59.76 dB even with 1 dB and $5^{\circ}$ mismatch in gain and phase, respectively.

Precise Test Sieves Calibration Method Based on Off-axis Digital Holography

  • Abdelsalam, Dahi Ghareab;Baek, Byung-Joon;Kim, Dae-Suk
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.146-151
    • /
    • 2011
  • We describe, throughout a Mach-Zehnder interferometric configuration, a new test sieves calibration method based on off-axis digital holography. The experiment is conducted on a test sieve of square openings. The nominal sieve opening is 1.00 mm with maximum individual opening of 1.14 mm in size. The recorded off-axis hologram is numerically processed using Fresnel transforms to obtain an object wave (amplitude and phase). From the reconstructed phase, the average size of the illuminated openings has been measured precisely. The proposed method can provide a real time solution for calibrating test sieves very precisely and with moderate accuracy.

Amplitude Correction Factors of KVN Observations Correlated by DiFX and Daejeon Correlators

  • Lee, Sang-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2015
  • We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22 GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institue (KASI) with Very Long Baseline Array (VLBA) observations at 22 GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C 454.3 and NRAO 512 which are almost unresolved for baselines in a range of 350-477 km. VLBA visibility data of the sources observed with similar baselines as KVN are selected, fringe-fitted, calibrated, and compared in their amplitudes. We found that visibility amplitudes of KVN observations should be corrected by factors of 1.14 and 1.40 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combination of two steps of 2-bit quantization in KVN observing systems and characteristics of Daejeon correlator.

  • PDF

A METHOD OF COLOR EXCESS DETERMINATION FOR HIGH AMPLITUDE δ SCUTI STARS

  • Kim, Chul-Hee;Choi, J.H.;Moon, B.K.;Boonrucksar, Soonthornthum
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.6
    • /
    • pp.155-159
    • /
    • 2009
  • In order to determine color excess in the $uvby\beta$ color system for high amplitude $\delta$ Scuti stars, reddening free $[m_1]$, $[c_1]$, and $\beta$ indices data were obtained from the existing literature for 21 stars. Then, the three intrinsic relations of $(b-y)_0$ - $[m_1]$, $(b-y)_0$ - $[c_1]$, and $(b-y)_0$ - $\beta$ were investigated. Among these, it was shown that the $(b-y)_0$-$[c_1]$ relation is the most useful. By establishing intrinsic $(b-y)_0$-$[c_1]$ relations for six reddening calibration stars, color excesses of other stars were determined.

An Extended Numerical Calibration Method for an Electrochemical Probe in Thin Wavy Flow with Large Amplitude Waves

  • Park, Ki-Yong;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.553-558
    • /
    • 1998
  • The calibrating method for an electrochemical Probe, neglecting the effect of the normal velocity on the mass transport, can cause large errors when applied to the measurement of wall shear rates in thin wavy flow with large amplitude waves. An extended calibrating method is developed to consider the contributions of the normal velocity. The inclusion of the turbulence-induced normal velocity term is found to have a negligible effect on the mass transfer coefficient. The contribution wave-induced normal velocity can be classified on the dimensionless parameter V. If V above a critical value of V, $V_{crit}$, the effects of the wave-induced normal velocity become larger with an increase in V. IF V its effects negligible for V < $V_{crit}$. The unknown shear rate is numerically determined by solving the 2-D mass transport equation inversely. The president inverse method can predict the unknown shear rate more accurately in thin wavy flow with large amplitude waves than the previous method.

  • PDF