• Title/Summary/Keyword: Amount of water evaporation

검색결과 141건 처리시간 0.029초

재배 조건에 따른 고추의 생장과 토양 수분소비의 변화 (Changes of Soil Water Balance and Growth of Red Pepper as Affected by Growing Conditions in the Plastic House)

  • 태근식;엄정식;황재문
    • 생물환경조절학회지
    • /
    • 제12권1호
    • /
    • pp.38-44
    • /
    • 2003
  • 플라스틱 하우스 내에서 토성과 재배조건을 달리하여 라이시메터를 이용한 용적법으로 고추의 증발산량을 구하고자 하였다. 멀칭과 사질 또는 점질양토는 무멀칭과 모래에 비하여 고추의 증산량이 높았으며, 고추의 생장과 수량을 증가시켰다. 그히고 총 관수량의 약53%∼72%가 고추의 증산에 소모되었고, 증발산량의 약 91%∼94%가 증산에 이용되었으며 증발량은 시기에 따라 크게 변하지 않았으나 생장 초기에 증산량보다 높은 편이었다. 고추의 전 생장기간 동안 증발산량은 기상조건과 생장량에 따라 다르지만, 점질양토에서 337.7∼774.3 mm, 사질양토에서 910.6 mm, 모래에서 253.1 m의 증산량을 보였다.

Ecosysteme de I′Etang de Berre (Mediterranee nord-occidentale) : Caracteres Generales Physiques, Chimiques et Biologiques

  • Kim, Ki-Tai
    • 환경생물
    • /
    • 제22권2호
    • /
    • pp.247-258
    • /
    • 2004
  • Climatological, hydrological and planktonical research studies, measurements of primary production and photosynthetic efficiency from December 1976 to December 1978 have been carried out in two brackish lakes: Lake Etang de Berre and Lake Etang de Vaine located in the French Mediterranean coast, in the region of Carry-le-Rouet located on the north-west Mediterranean near Marseilles, and in fresh water inflows from 4 Rivers (Touloubre, Durance, Arc, Durancole) to Lake Etang de Berre. Physico-chemical parameters were measured for this study: water temperature, salinity, density, pH, alcalinity, dissolved oxygen (% saturation), phosphate, nitrate, nitrite, silicate etc. Diverse biological parameters were also studied: photosynthetic pigments, phaeopigments, specific composition and biomass of phytoplankton, primary pelagic production etc. Climatical factors were studied: air-temperature, solar-radiation, evaporation, direction (including strength) of winds, precipitation and freshwater volume of the four rivers. The changes in Lake ‘Etang de Berre’ ecosystem depend on the quality of the water in the Durance River, and on the effects of seawater near the entrance of the Caronte Canal. The water quality of the lake varies horizontally and vertically as a result of atmospheric phenomena, maritime currents and tides. The distribution of water temperatures is generally heterogeneous. Southeasterly winds and the Northeasterly Mistral wind are important in the origins of circulated and mixed water masses. These winds are both frequent and strong. They have, as a result, a great effect on the water environment of Lake Etang de Berre. In theory, the annual precipitation in this region is well over eight times the water mass of the lake. The water of the Durance River flows into Lake Etang de Berre through the EDF Canal, amounting to 90% of the precipitation. However, reduction of rainfall in dry seasons has a serious effect on the hydrological characteristics of the lake. The temperature in the winter is partially caused by the low temperature of fresh water, particularly that of the Durance River. The hydrological season of fresh and brackish water is about one month ahead of the hydrological season of sea water in its vicinity. The salinity of Lake Etang de Berre runs approximately 3$\textperthousand$, except at lower levels and near the entrance to the Caronte Canal. However, when the volume of the Durance River water is reduced in the summer and fall, the salinity rises to 15$\textperthousand$. In the lake, the ratio of fresh water to sea water is six to one (6:1). The large quantities of seston conveyed by rivers, particularly the Durance diversion, strongly reduce the transparency in the brackish waters. Although the amount of sunshine is also notable, transparency is slight because of the large amount of seston, carried chiefly by Tripton in the fresh water of the Durance River. Therefore, photosynthesis generally occurs only in the surface layer. The transparency progressively increases from freshwater to open seawater, as mineral particles sink to the bottom (about 1.7kg $m^{-2}a^{-1}$ on the average in brackish lakes). The concentration of dissolved oxygen and the rate of oxygen saturation in seawater (Carry-le-Rouet) ranged from 5.0 to 6.0 $m\ell$ㆍ.$1^{-1}$, and from 95 to 105%, respectively. The amount of dissolved oxygen in Etang de Berre oscillated between 2.9 and 268.3%. The monographs of phosphate, nitrate, nitrite and silicate were published as a part of a study on the ecology of phytoplankton in these environments. Horizontal and vertical distributions of these nutriments were studied in detail. The recent diversion of the Durance River into Lake Etang de Berre has effected a fundamental change in this formerly marine environment, which has had a great impact in its plankton populations. A total of 182 taxa were identified, including 111 Bacillariophyceae, 44 Chlorophyceae, and 15 Cyanophyceae. The most abundant species are small freshwater algae, mainly Chlorophyceae. The average density is about $10^{8}$ cells $1^{-1}$ in Lake Etang de Berre, and about double that amount in Lake Etang de Vaine. Differences in phytoplankton abundance and composition at the various stations or at various depths are slight. Cell biovolume V (equivalent to true biomass), plasma volume VP (‘useful’ biomass) and, simultaneously. the cell surface area S and S/V ratio through the measurement of cell dimensions were computed as the parameters of phytoplankton productivity and metabolism. Pigment concentrations are generally very high on account of phytoplankton blooms by Cyanophyceae, Chlorophyceae and Cryptophyceae. On the other hand, in freshwaters and marine waters, pigment concentrations are comparatively low and stable, showing slight annual variation. The variations of ATP concentration were closely related to those of chlorophyll a and phytoplankton blooms only in marine waters. The carbon uptake rates ranged between 38 and 1091 mg$Cm^{-2}d^{-1}$, with an average surface value of 256 mg; water-column carbon-uptake rates ranged between 240 and 2310 mg$Cm^{-2}d^{-1}$, with an average of 810, representing 290 mg$Cm^{-2}$, per year 45 000 tons per year of photosynthetized carbon for the whole lake. Gross photosynthetic production measured by the method of Ryther was studied over a 2-year period. The values obtained from marine water(Carry-le-Rouet) ranged from 23 to 2 337 mg$Cm^{-2}d^{-1}$, with a weighted average of 319, representing about 110 gCm$^{-2}$ per year. The values in brakish water (Etang de Berre) ranged from 14 to 1778 mg$Cm^{-2}d^{-1}$, with a weighted average of 682, representing 250 mg$Cm^{-2}$ per year and 38 400 tons per year of photosynthesized carbon for the whole lake.

흡수식 대온도차 시스템에서 2단 증발/흡수기의 성능 특성에 관한 수치적 연구 (Performance analysis for the Characteristics of Double Stage Evaporator/Absorber for Large temperature Difference Absorption System)

  • 박찬우;강용태;임익태;문상돈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.304-308
    • /
    • 2008
  • The optimal design of two stage evaporation & absorption system which is related to the large temperature difference system was investigated numerically in the absorption refrigeration system. The concentrations at inlet & oulet of absorber are 62.9% and 56.9%, but in two stage absorption system the values are 62.2% and 56.2%. Therefore strong solution & weak solution became diluted than the standard value. The amount of weak solution circulation can be reduced in absorption refrigeration system, and the sensible heat load is more reduced to enhance the COP of system. As UAR is increased, COP becomes larger, and this means the role of top section is more important than bottom section in two stage evaporation & absorption system. But the increase of COP becomes slower at 0.7 of UAR ratio. The performance of Type2 is higher than Type1 in COP with the flow direction of cooling waters. This phenomena is due to the active absorption of vapor -absorption & lower temp. cooling water is more effective. The pressure at bottom section becomes higher & that at top section becomes lower and therefore the circulation rate can be diminished more.

  • PDF

냉수 대온도차 흡수식 냉동기용 2단 증발기/ 흡수기 최적 설계 (Optimum design of the Characteristics of Double Stage Evaporator/Absorber for Large temperature Difference Absorption System)

  • 박찬우;임익태;강용태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.203-211
    • /
    • 2008
  • The optimal design of two stage evaporation & absorption system which is related to the large temperature difference system was investigated numerically in the absorption refrigeration system. The concentrations at inlet & oulet of absorber are 62.9% and 56.9%, but in two stage absorption system the values are 62.2% and 56.2%. Therefore strong solution & weak solution became diluted than the standard value. The amount of weak solution circulation can be reduced in absorption refrigeration system, and the sensible heat load is more reduced to enhance the COP of system. As UAR is increased, COP becomes larger, and this means the role of top section is more important than bottom section in two stage evaporation & absorption system. But the increase of COP becomes slower at 0.7 of UAR ratio. The performance of Type2 is higher than Type1 in COP with the flow direction of cooling waters. This phenomena is due to the active absorption of vapor -absorption & lower temp. cooling water is more effective. The pressure at bottom section becomes higher & that at top section becomes lower and therefore the circulation rate can be diminished more.

  • PDF

NiO가 도핑된 BaZr0.85Y0.15O3-δ의 소결거동 및 전도도에 관한 연구 (A Study on Sintering Behavior and Conductivity for NiO-doped BaZr0.85Y0.15O3-δ)

  • 박영수;김진호;김혜경;황광택
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.670-677
    • /
    • 2012
  • Perovskite-type oxides such as doped barium zirconate ($BaZrO_3$) show high proton conductivity and chemical stability when they are exposed to hydrogen and water vapour containing atmospheres, thus it can be applicable to the hydrogen separation and the fuel cell electrolyte membranes. However the high temperature ($1700-1800^{\circ}C$) and long sintering times (24h) are generally required to prepare the fully densified $BaZrO_3$ pellets. These sintering conditions lead to the limitation of the grain size growth and the degradation of conductivity due to the acceleration of BaO evaporation at $1200^{\circ}C$. Here we demonstrate NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ with lower calcination and sintering temperature, less experimental procedure and lower process cost than the conventional mixing method. The stoichiometry of $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ was optimized by the control of excess amount of Ba (5mol%) to minimized BaO evaporation. We found that the crystal size of NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ was increased with increase of calcination temperature from XRD analysis. NiO-doped $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ powder was calcined at $1000^{\circ}C$ for 12h when its showed the highest conductivity of $3.3{\times}10^{-2}s/cm$.

지속적인 국소마취를 위한 생분해성 PLGA 미립구의 제조와 생체외 방출 거동 (Preparation of Biodegradable PLGA Microspheres for Sustained Local Anesthesia and Their in vitro Release Behavior)

  • 조진철;강길선;최학수;이종문;이해방
    • 폴리머
    • /
    • 제24권5호
    • /
    • pp.728-735
    • /
    • 2000
  • 지속적인 국소 마취의 가능성을 연구하기 위하여 펜타닐이 함유된 생분해성 poly(L-lactide-glycolide) (75 : 25 락타이드와 글리콜라이드의 몰 비, PLGA) 미립구를 제조하였다. 펜타닐 베이스가 함유된 PLGA 미립구는 일반적인 O/W 용매 증발법으로 제조하였으며 미립구의 크기는 10에서 150 $\mu\textrm{m}$의 범위에 있었다. 미립구의 표면과 단면 형태를 전자현미경으로 관찰하였고 생체외 펜타닐 베이스 방출량은 HPLC로 분석하였다. 젤라틴 유화제의 사용으로 가장 낮은 다공성 단면의 형태와 가장 높은 포접율을 가질 수 있었다. 펜타닐의 방출 패턴은 유화제의 종류, PLGA의 분자량 및 농도, 초기 약물 loading양 등과 같은 제조 조건들의 영향이 미치는 것으로 관찰되었다. 생체외에서 펜타닐 베이스의 방출은 제조 조건을 조절함으로써 거의 zero-order 형태로 25일 이상으로 지속적이었다. 또한 XRD와 DSC로 펜타닐이 함유된 PLGA 미립구의 물리화학적인 성질을 조사하였다.

  • PDF

토양수분함량 예측 및 계획관개 모의 모형 개발에 관한 연구(I) (A Study on the Development of a Simulation Model for Predicting Soil Moisture Content and Scheduling Irrigation)

  • 김철회;고재군
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4279-4295
    • /
    • 1977
  • Two types of model were established in order to product the soil moisture content by which information on irrigation could be obtained. Model-I was to represent the soil moisture depletion and was established based on the concept of water balance in a given soil profile. Model-II was a mathematical model derived from the analysis of soil moisture variation curves which were drawn from the observed data. In establishing the Model-I, the method and procedure to estimate parameters for the determination of the variables such as evapotranspirations, effective rainfalls, and drainage amounts were discussed. Empirical equations representing soil moisture variation curves were derived from the observed data as the Model-II. The procedure for forecasting timing and amounts of irrigation under the given soil moisture content was discussed. The established models were checked by comparing the observed data with those predicted by the model. Obtained results are summarized as follows: 1. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as the equation(2). 2. Among the various empirical formulae for potential evapotranspiration (Etp), Penman's formula was best fit to the data observed with the evaporation pans and tanks in Suweon area. High degree of positive correlation between Penman's predicted data and observed data with a large evaporation pan was confirmed. and the regression enquation was Y=0.7436X+17.2918, where Y represents evaporation rate from large evaporation pan, in mm/10days, and X represents potential evapotranspiration rate estimated by use of Penman's formula. 3. Evapotranspiration, Et, could be estimated from the potential evapotranspiration, Etp, by introducing the consumptive use coefficient, Kc, which was repre sensed by the following relationship: Kc=Kco$.$Ka+Ks‥‥‥(Eq. 6) where Kco : crop coefficient Ka : coefficient depending on the soil moisture content Ks : correction coefficient a. Crop coefficient. Kco. Crop coefficients of barley, bean, and wheat for each growth stage were found to be dependent on the crop. b. Coefficient depending on the soil moisture content, Ka. The values of Ka for clay loam, sandy loam, and loamy sand revealed a similar tendency to those of Pierce type. c. Correction coefficent, Ks. Following relationships were established to estimate Ks values: Ks=Kc-Kco$.$Ka, where Ks=0 if Kc,=Kco$.$K0$\geq$1.0, otherwise Ks=1-Kco$.$Ka 4. Effective rainfall, Re, was estimated by using following relationships : Re=D, if R-D$\geq$0, otherwise, Re=R 5. The difference between rainfall, R, and the soil moisture depletion D, was taken as drainage amount, Wd. {{{{D= SUM from { {i }=1} to n (Et-Re-I+Wd)}}}} if Wd=0, otherwise, {{{{D= SUM from { {i }=tf} to n (Et-Re-I+Wd)}}}} where tf=2∼3 days. 6. The curves and their corresponding empirical equations for the variation of soil moisture depending on the soil types, soil depths are shown on Fig. 8 (a,b.c,d). The general mathematical model on soil moisture variation depending on seasons, weather, and soil types were as follow: {{{{SMC= SUM ( { C}_{i }Exp( { - lambda }_{i } { t}_{i } )+ { Re}_{i } - { Excess}_{i } )}}}} where SMC : soil moisture content C : constant depending on an initial soil moisture content $\lambda$ : constant depending on season t : time Re : effective rainfall Excess : drainage and excess soil moisture other than drainage. The values of $\lambda$ are shown on Table 1. 7. The timing and amount of irrigation could be predicted by the equation (9-a) and (9-b,c), respectively. 8. Under the given conditions, the model for scheduling irrigation was completed. Fig. 9 show computer flow charts of the model. a. To estimate a potential evapotranspiration, Penman's equation was used if a complete observed meteorological data were available, and Jensen-Haise's equation was used if a forecasted meteorological data were available, However none of the observed or forecasted data were available, the equation (15) was used. b. As an input time data, a crop carlender was used, which was made based on the time when the growth stage of the crop shows it's maximum effective leaf coverage. 9. For the purpose of validation of the models, observed data of soil moiture content under various conditions from May, 1975 to July, 1975 were compared to the data predicted by Model-I and Model-II. Model-I shows the relative error of 4.6 to 14.3 percent which is an acceptable range of error in view of engineering purpose. Model-II shows 3 to 16.7 percent of relative error which is a little larger than the one from the Model-I. 10. Comparing two models, the followings are concluded: Model-I established on the theoretical background can predict with a satisfiable reliability far practical use provided that forecasted meteorological data are available. On the other hand, Model-II was superior to Model-I in it's simplicity, but it needs long period and wide scope of observed data to predict acceptable soil moisture content. Further studies are needed on the Model-II to make it acceptable in practical use.

  • PDF

고아미 2호와 쌀가루 배합 비율을 달리한 설기떡의 품질 특성에 관한 연구 (Study on the Quality Characteristics of Sulgitteok Made with Various Amount of 'Goami 2' and Rice Powder)

  • 정선옥;김현아;이경희
    • 동아시아식생활학회지
    • /
    • 제19권6호
    • /
    • pp.928-934
    • /
    • 2009
  • The purpose of this study was to examine the possibility of making functional sulgitteok with Goami 2 rice, which is a rich that is high in dietary fiber. Sulgitteok was made by adding various amounts of Goami powder(25, 50, 75, and 100 %) to rice powder. Then, the sensory tests and other tests to measure color, texture and hardness were examined as a function of time and the moisture content in sulgitteok was measured to determine the quality and characteristics of different types of sulgitteok. The conclusions of these tests were as follows : In the sensory evaluation preference test of sulgitteok made with various amounts of Goami powder, the overall preference was the highest in sulgitteok made with 50% Goami powder (S2). In the difference test, the higher the amount of added Goami powder, the lower the grades were. The S4 group, which was made with Gomai powder, had a strongly unique odor compared with those made with rice powder, which smelled weaker. In terms of the color values of Gomai added sulgitteok, the higher the amount of added Gomai powder, the lower the lightness value of sulgitteok, where group S4 had the lowest value. In addition, the S4 group, which was made with Goami powder, had the hightest red and yellow color. The texture test indicated that sulgitteok containing a large amount of Goami powder were considerably harder compared with the control group. While every group containing Goami powder (S1, S2, S3 and S4) became harder during the first to the third day of the test, their hardness tended to drop after longer storage times. In the control group, the hardness continued to grow from the start up to the fifth day. After five days' there was a noticeable change in the moisture content in the different types of sulgitteok, with more water evaporating in the S3, S2, and S1 groups than in the S4 groups, which contained the highest amount of Goami powder. Group C, which contained no Goami powder, had the largest water evaporation. Sulgitteok that contained more Goami powder turned out to be more savory than baekseolgi made solely of rice powder. However, they were less preferable overall, since they were rated lower in terms of color, texture and other characteristics. Therefore, utilize Goami tteok as a functional ingredient in food for people with diabetes or obesity, further studies on additives that can provide a sticky texture and favorable color should be conducted. In addition, different types of ttoek such as pounded or boiled ones may be preferable to sulgitteok.

  • PDF

스크레파 축사에서 배출되는 돈분뇨슬러리 호기성 퇴비화의 환경요인 현장조사 (Field Investigation of Environment Parameter in Aerobic Composting for Pig Slurry at a Scraper System)

  • 류종원
    • 한국축산시설환경학회지
    • /
    • 제14권3호
    • /
    • pp.183-192
    • /
    • 2008
  • 본 연구는 스크레파 축사에서 톱밥을 미리 충전하고 주기적으로 돈분뇨슬러리을 투입하는 연속호기성 퇴비화 시스템 공정에서 효율적인 퇴비화 환경요인 지표의 기초자료로 활용하기 위하여 퇴비화 과정 중 온도, 수분, 수분수지 등 환경요인과 최종 퇴비의 이화학적 특성을 조사하였다. 1. 퇴비 발효기간 동안 발효층의 온도가 $50{\sim}70^{\circ}C$ 범위로서 정상적인 온도를 유지하였고, 겨울기간 동안에도 높은 온도를 유지하여 퇴비 발효가 활발하게 진행되었다. 발효조의 높이별 온도는 중간층 온도가 가장 높고 하부층 온도가 가장 낮았으며 두 층간 온도차는 $5{\sim}20^{\circ}C$를 나타내었다. 퇴비발효조의 수분함량이 50%내외일 때 발효조 온도가 $20{\sim}30^{\circ}C$로서 정상적인 발효가 일어나지 않았다. 발효조 시설물 내부의 상대습도는 최저 55%에서 최고 88% 범위에 있었다. 따라서 퇴비사의 습한 공기를 제거하기 위한 휀 장치를 설치하는 것이 필요할 것으로 사료된다. 퇴비화 기간 동안 수분수지를 분석한 결과 총 투입 수분의 90%가 증발되는 것으로 산출되었다. 2. 본 연구의 퇴비화 방식은 발효조에 수분조절제인 톱밥을 한 번 투입하고 분뇨를 연속적으로 투입하여 5월 가량 연속적으로 사용이 가능하여 톱밥 $1m^3$으로 돈분뇨슬러리 $3,13m^3$의 퇴비화 처리가 가능하였다. 3. 퇴비화 기간이 약 5개월간 발효를 거치므로 퇴비의 비료성분 함량이 높았으며 탄소함량은 34% 질소 함량은 1.62%를 나타내었고 탄질비는 21을 나타내었다.

  • PDF

밭작물소비수량에 관한 기초적 연구 -토마토 및 가을배추- (Basic Studies on the Consumptive Use of Water Required for Dry Field Crops -Tomato and Chinese Cabbage-)

  • 김철기;김진한;최홍규
    • 한국농공학회지
    • /
    • 제30권3호
    • /
    • pp.25-37
    • /
    • 1988
  • The purpose of this study is to fmd out the bask data for irrigation plans of tomato and chinese cabbage during the growing period, such as total amount of evapotranspiration, coefficients of evapotranspiration at each growth stage, the peak stage of evapotranspiration, the maximum evapotranspiration, optimum irrigation point, total readily available moisture and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soji texture for split plot, and three levels, irrigation points with PF 1.8, PF 2.2, PF 2.6 for tomato and those with PF 1.9, PF 2.3, PF 2.7, for Chinese cabbage, soil textures of silty clay, sandy loam and sandy soil for both tomato and Chinese cabbage, with two replications. The results obtained are summarized as follows 1. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteoralogical factors considered. Therefore, the pan evaporation is enough to be used as a meteorological index measuring the quantity of evapotranspiration. 2. 1/10 probability values of maximum total pan evaporation during growing period for tomato and Chinese cabbage were shown as 355.8 mm and 233.0 mm, respectively, and those of maximum ten day pan evaporation for tomato and Chinese cabbage, 68.0 mm and 43.8 mm, respectively. 3. The time that annual maximum of ten day pan evaporation can be occurred, exists at any stage of growing period for tomato, and at any growth stage till the late of Septemberfor Chinese cabbage. 4. The magnitude of evapotranspiration and of its coefficient for tomato and Chinese cabbage was occurred in the order of pF 1.8>pF 2.2>pF 2.6 and of pF 1.9>pF 2.3>pF 2.7 respectively in aspect of irrigation point and of silty clay>sandy loam>sandy soil in aspect of soil texture. 5. 1/10 probability value of evapotranspiration and its coefficient during the growing period of tomato were shown as 327.3 mm and 0.92 respectively, while those of Chinese cabbage, 261.0 mm and 1.12 respectively. 6. The time that maximum evapotranspiration of tomato can be occurred is at the date of fortieth to fiftieth after transplanting and the time for Chinese cabbage is presumed to he in the late of septemben At that time, 1/10 probability value of ten day evapotranspiration and its coefficient for tomato is presumed to be 74.8 mm and 1.10 respectively, while those of Chinese cabbage, 43.8 mm and 1.00. 7. In aspect of only irrigaton point, the weight of raw tomato and Chinese cabbage were mcreased in the order of pF 2.2>pF 1.8>pF 2.6 and of pF 1.9>pF 2.3>pF 2.7, respectively but optimum irrigation point for tomato and Chinese cabbage, is presumed to be pF 2.6 - 2.7 if nonsignificance of the yield between the different irrigation treatments, economy of water, and reduction in labour of irrigaion are synthetically considered. 8. The soil moisture extraction patterns of tomato and Chinese cabbage have shown that maximum extraction rate exists at 7 cm deep layer at the beginning stage of growth m any soil texture and that extraction rates of 21 cm to 35 cm deep layer are increased as getting closer to the late stage of growth. And especially the extraction rates of 21 cm deep layer and 35 cm deep layer have shown tendency to be more increased in silty clay than in any other soils. 9. As optimum irrigation point is presumed to be pF Z6-2.7, total readily available moisture of tomato in silty clay, sandy loam and sandy sofl becomes to be 19.06 mm, 21.37 mm and 20.91 mm respectively while that of Chinese cabbage, 18.51 mm, 20.27 mm, 21.11 mm respectively. 10. On the basis of optimum irrigation point with pF 2.6 - 2.7 the intervals of irrigation date of tomato and Chinese cabbage at the growth stage of maximum consumptive use become to be three days and five days respectively.

  • PDF